1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
3 years ago
11

How can you turn off a magnetic field produced by an electrical current?

Physics
2 answers:
sergij07 [2.7K]3 years ago
7 0

Answer:

d) By turning the electrical current off

Explanation:

this is the only one that fits this situation because all of the other answers help improve the magnetic field.

aleksklad [387]3 years ago
6 0

Answer:By turning the electrical current off

Explanation:Trust me I took the test

You might be interested in
Peter designed a road with a curve of radius 30 m that is banked so that a 950 kg car traveling at 40.0 km/h can round it even i
spayn [35]

Answer:

v = 15.56 m/s

v = 56 km/h

Explanation:

When coefficient of friction is approximately zero then we have

F_ncos\theta = mg

F_n sin\theta = \frac{mv^2}{R}

tan\theta = \frac{v^2}{Rg}

here we know that

v = 40 km/h = 11.11 m/s

R = 30 m

tan\theta = \frac{11.11^2}{30\times 9.81}

\theta = 22.75 degree

now when friction coefficient is 0.30 then we have

F_n cos\theta = mg + F_f sin\theta

F_f cos\theta + F_n sin\theta = \frac{mv^2}{R}

now we have

v = \sqrt{Rg(\frac{\mu + tan\theta}{1 - \mu tan\theta})}

v = \sqrt{30(9.81)(\frac{0.30 + tan22.75}{1 - (0.30) tan22.75})}

v = 15.56 m/s

v = 56 km/h

3 0
3 years ago
The pilot of an aircraft wishes to fly due west in a 33.9 km/h wind blowing toward the south. The speed of the aircraft in the a
diamong [38]

Answer:\theta =9.96^{\circ} North of west

Explanation:

Given

Plane wishes to fly in west

but wind with speed 33.9 km/h towards south obstructing its path

so plane must fly at an angle of \theta w.r.t west such that it final velocity is towards west

Plane absolute speed=195 km/h

To fly towards west velocity in Y direction should be zero

thus 195sin\theta =33.9

\theta =9.96^{\circ}

so Plane should head towards 9.96^{\circ} North of west in order to fly in west.

So plane

actual velocity is

v=-195cos9.96\hat{i}+195sin9.96\hat{j}

5 0
3 years ago
xConsider the following reduction potentials: Cu2+ + 2e– Cu E° = 0.339 V Pb2+ + 2e– Pb E° = –0.130 V For a galvanic cell employi
slega [8]

Answer:

Approximately \rm 90\; kJ.

Explanation:

Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction (E^{\circ}(\text{cell})) is equal to

E^{\circ}(\text{cell}) = E^{\circ}(\text{cathode}) - E^{\circ}(\text{anode}).

There are two half-reactions in this question. \rm Cu^{2+} + 2\,e^{-} \rightleftharpoons Cu and \rm Pb^{2+} + 2\,e^{-} \rightleftharpoons Pb. Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of E^{\circ}(\text{cell}) should be positive.

In this case, E^{\circ}(\text{cell}) is positive only if \rm Cu^{2+} + 2\,e^{-} \rightleftharpoons Cu is the reaction takes place at the cathode. The net reaction would be

\rm Cu^{2+} + Pb \to Cu + Pb^{2+}.

Its cell potential would be equal to 0.339 - (-0.130) = \rm 0.469\; V.

The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:

\Delta G^{\circ} = n \cdot F \cdot E^{\circ} (\text{cell}),

where

  • n is the number moles of electrons transferred for each mole of the reaction. In this case the value of n is 2 as in the half-reactions.
  • F is Faraday's Constant (approximately 96485.33212\; \rm C \cdot mol^{-1}.)

\begin{aligned}\Delta G^{\circ} &= n \cdot F \cdot E^{\circ} (\text{cell})\cr &= 2\times 96485.33212 \times (0.339 - (-0.130)) \cr &\approx 9.0 \times 10^{4} \; \rm J \cr &= 90\; \rm kJ\end{aligned}.

5 0
3 years ago
Determine the density of a rectangular piece of concrete that measures 3.7 cm by 2.1 cm by 5.8 cm and has a mass of 43.8 grams.
Novay_Z [31]
It is customary to work in SI units.

Calculate the volume of the concrete.
V = 3.7*2.1*5.8 cm³ = 45.066 cm³ = 45.066 x 10 ⁻⁶ m³

The mass is  43.8 g = 43.8 x 10⁻³ kg

The density is mass/volume.
Density = (43.8 x 10⁻³ kg)/(45.066 x 10⁻⁶ m³) = 971.9 kg/m³

Answer: 971.9 kg/m³
5 0
3 years ago
A 40-W lightbulb is 1.7 m from a screen. What is the intensity of light incident on the screen? Assume that a lightbulb emits ra
Sonja [21]

Answer:

Intensity, I=1.101\ W/m^2

Explanation:

Power of the light bulb, P  = 40 W

Distance from screen, r = 1.7 m

Let I is the intensity of light incident on the screen. The power acting per unit area is called the intensity of the light. Its formula is given by :

I=\dfrac{P}{A}

I=\dfrac{P}{4\pi r^2}

I=\dfrac{40\ W}{4\pi (1.7\ m)^2}

I=1.101\ W/m^2

So, the intensity of light is 1.101\ W/m^2.

6 0
4 years ago
Other questions:
  • Compare the processes and locations of cellular respiration and photosynthesis. Explain why it is accurate to say that life on E
    5·1 answer
  • How does speed relate to motion energy?
    9·2 answers
  • What energy transformation takes place when you turn on a space heater?
    15·1 answer
  • Which of the following phenomenA show the wave of electron
    13·1 answer
  • A rock weighing 20 n (mass = 2 kg) is swung in a horizontal circle of radius 2 m at a constant speed of 6 m/s. what is the centr
    13·2 answers
  • Counseling psychologists typically handle severe psychological disorders.
    12·2 answers
  • How do you find initial velocity?
    13·1 answer
  • Which of the following best describes the prime meridian?
    13·1 answer
  • PLZZ I WILL DO ANY THING
    13·1 answer
  • 17. How long does it take a giraffe running at a speed of 33 m/s to run 200 meters !
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!