Answer:
A 50 kg ball traveling at 20 m/s would have 4 times more kinetic energy.
A 50 kg ball traveling at 5 m/s would have 4 times less kinetic energy.
A 50 kg person falling at 10 m/s would have the same kinetic energy.
Explanation:
hope this helps:)
Answer: Approximately 8.0g of water
Explanation:
<span>Frequency x Wavelength = Speed of light
Now, speed of light = 3 x 10^5 km/s = 3 x 10^8 m/s = 3 x 10^10 cm/s
Frequency = speed/Wavelength
= (3 x 10^10)/(4.257 x 10^-7)
=7 x 10^16 Hz</span>
<u>Answer:</u>
Adaption to stress occurs in three stages: alarm, fight or flight, exhaustion.
<u>Explanation:</u>
According to the general adaptation syndrome theory proposed by Hans Selye, the adaption to stress occurs in three stages which are:
1. alarm
2. fight or flight
3. exhaustion
This is a process which comprises of three stages that describes the physiological changes which a body undergoes when in stress (an emotional, mental and physical human response to a specific stimulus).
Answer:
the mass of water is 0.3 Kg
Explanation:
since the container is well-insulated, the heat released by the copper is absorbed by the water , therefore:
Q water + Q copper = Q surroundings =0 (insulated)
Q water = - Q copper
since Q = m * c * ( T eq - Ti ) , where m = mass, c = specific heat, T eq = equilibrium temperature and Ti = initial temperature
and denoting w as water and co as copper :
m w * c w * (T eq - Tiw) = - m co * c co * (T eq - Ti co) = m co * c co * (T co - Ti eq)
m w = m co * c co * (T co - Ti eq) / [ c w * (T eq - Tiw) ]
We take the specific heat of water as c= 1 cal/g °C = 4.186 J/g °C . Also the specific heat of copper can be found in tables → at 25°C c co = 0.385 J/g°C
if we assume that both specific heats do not change during the process (or the change is insignificant)
m w = m co * c co * (T eq - Ti co) / [ c w * (T eq - Tiw) ]
m w= 1.80 kg * 0.385 J/g°C ( 150°C - 70°C) /( 4.186 J/g°C ( 70°C- 27°C))
m w= 0.3 kg