Answer:

Explanation:
-Specific heat capacity is given by the formula:

Where:
is the heat gained or loosed by the substance
is the mass of the substance
is the specific heat of the substance
is the change in temperature
#We make c the subject of the formula and substitute to solve for it:

Hence, the specific heat capacity of the ice is 
Answer:
Fish need to be aerodynamic to move quickly. If they had legs they woulf be less aerodynamic and unable to get away from predators.
Energy lost to condense = 803.4 kJ
<h3>Further explanation</h3>
Condensation of steam through 2 stages:
1. phase change(steam to water)
2. cool down(100 to 0 C)
1. phase change(condensation)
Lv==latent heat of vaporization for water=2260 J/g

2. cool down
c=specific heat for water=4.18 J/g C

Total heat =

Answer:
(E) changing temperature
Explanation:
Consider the following reversible balanced reaction:
aA+bB⇋cC+dD
If we know the molar concentrations of each of the reaction species, we can find the value of Kc using the relationship:
Kc = ([C]^c * [D]^d) / ([A]^a * [B]^b)
where:
[C] and [D] are the concentrations of the products in the equilibrium; [A] and [B] reagent concentrations in equilibrium; already; b; c and d are the stoichiometric coefficients of the balanced equation. Concentrations are commonly expressed in molarity, which has units of moles / 1
There are some important things to remember when calculating Kc:
- <em>Kc is a constant for a specific reaction at a specific temperature</em>. If you change the reaction temperature, then Kc also changes
- Pure solids and liquids, including solvents, are not considered for equilibrium expression.
- The reaction must be balanced with the written coefficients as the minimum possible integer value in order to obtain the correct value of Kc
Answer:
Carbonic acid could be formed.
Explanation:
Hello,
Based on her claim, it would be a really useful strategy to prevent global warming, nevertheless, there would be a problem if a increasing amount of carbon dioxide is not buried at the bottom of the ocean yet it flows freely along the sea and probably reacting with the water, causing carbonic acid to be formed and subsequently cutting back the sea's pH (increasing its acidity).
It would be useful, but a constant monitoring of the sea's pH must be needed because this could cause some species to be affected not only by the temperature but for the acid pH as well.
Best regards.