Answer:
The heat that was used to melt the 15.0 grams of ice at 0°C is 4,950 Joules
Explanation:
The mass of ice in the beaker = 15.0 grams
The initial temperature of the ice = 0°C
The final temperature of the ice = 0°C
The latent heat of fusion of ice = 330 J/g
The heat required to melt a given mass of ice = The mass of the ice to be melted × The latent heat of fusion of ice
Therefore, the heat, Q, required to melt 15.0 g of ice = 15.0 g × 330 J/g = 4,950 J
The heat that was used to melt the 15.0 grams of ice = 4,950 Joules.
Answer;
C7H14O2
Solution;
Isobutyl contains , oxygen, carbon and hydrogen (total mass is 1.152 g)
Mass of carbon = 12/44 × 2.726 g
= 0.743455 g
Mass of Hydrogen = 2/18 × 1.116 g
= 0.124 g
Mass of oxygen = 1.152 - (0.7435 + 0.124)
= 0.2845 g
Moles of carbon ; 0.7435/12 = 0.06196 moles
Moles of hydrogen; 0.124/1 = 0.124 moles
Moles of oxygen; 0.2845/16 = 0.01778 moles
Ratios ; 0.06196/0.01778 ; 0.124/0.01778 : 0.01778/0.01778
= 3.5 : 7.0 : 1
To make them whole numbers ; we multiply the ratios by 2 to get;
(3.5 : 7.0 : 1 )2 = 7 : 14 : 2
Thus, the empirical formula of Isobutyl propionate is C7H14O2
Answer:
4) 0.26 atm
Explanation:
In the process:
Benzene(l) → Benzene(g)
ΔG° for this process is:
ΔG° = -RT ln Q
<em>Where Q = P(Benzene(g)) / P°benzene(l) P° = 1atm</em>
ΔG° = 3700J/mol = -8.314J/molK * (60°C + 273.15) ln P(benzene) / 1atm
1.336 = ln P(benzene) / 1atm
0.26atm = P(benzene)
Right answer is:
<h3>4) 0.26 atm
</h3><h3 />
Answer:
5.5 atm
Explanation:
Step 1: Calculate the moles in 2.0 L of oxygen at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
2.0 L × 1 mol/22.4 L = 0.089 mol
Step 2: Calculate the moles in 8.0 L of nitrogen at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
8.0 L × 1 mol/22.4 L = 0.36 mol
Step 3: Calculate the total number of moles of the mixture
n = 0.089 mol + 0.36 mol = 0.45 mol
Step 4: Calculate the pressure exerted by the mixture
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 0.45 mol × (0.0821 atm.L/mol.K) × 298 K / 2.0 L = 5.5 atm