D. The number of electrons equals the atomic number for a neutral element. Each number after the letter refers to the number of electrons in that shell. So for D, 2+2+6+2+6+2 = 20 electrons, which is equal to the atomic number.
Answer:
The answer is "
"
Explanation:
Please find the complete question in the attached file.
Equation:
at
at equilibrium
![p= 0.47 \ \ atm\\\\SO_2=3.3-0.47 = 2.83 \ \ atm\\\\O_2= 0.74 -\frac{0.47}{2}=0.74-0.235=0.555 \ atm\\\\K_P=\frac{[PSO_3]^2}{[PSO_2]^2[PO_2]}\\\\](https://tex.z-dn.net/?f=p%3D%200.47%20%5C%20%5C%20atm%5C%5C%5C%5CSO_2%3D3.3-0.47%20%3D%202.83%20%5C%20%5C%20atm%5C%5C%5C%5CO_2%3D%200.74%20-%5Cfrac%7B0.47%7D%7B2%7D%3D0.74-0.235%3D0.555%20%5C%20atm%5C%5C%5C%5CK_P%3D%5Cfrac%7B%5BPSO_3%5D%5E2%7D%7B%5BPSO_2%5D%5E2%5BPO_2%5D%7D%5C%5C%5C%5C)

I think the answer is
Reduce friction
:)
Answer:
Are basic:
[OH⁻] = 3.13x10⁻⁷M and [H₃O⁺] = 9.55x10⁻⁹M
Explanation:
A solution is basic when pH = - log [H₃O⁺] is higher than 7.
It is possible to convert [OH⁻] to [H₃O⁺] using:
[H₃O⁺] = 1x10⁻¹⁴ / [OH⁻]
a. [OH⁻] = 3.13x10⁻⁷M
[H₃O⁺] = 1x10⁻¹⁴ / [3.13x10⁻⁷M]
[H₃O⁺] = 3.19x10⁻⁸M
pH = - log [H₃O⁺] = 7.50
[OH⁻] = 3.13x10⁻⁷M is basic
b. pH = -log [H₃O⁺] = - log 0.000747M = 3.13.
This solution is not basic
c. [H₃O⁺] = 9.55x10⁻⁹M
pH = 8.02
This solution is also basic.
Answer:
The answer copper carbonate