X is always the independent variable
An example of erosion is the Grand Canyon, which was worn away over time by the Colorado river.
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.
The question requires us to complete the sentence regarding the preparation of a more dilute NaOH solution (0.100 M, 50.0 mL) from a more concentrated NaOH solution (1.00 M).
Analyzing the blank spaces that we need to fill in the sentence, we can see that we must provide the volume of the more concentrated solution and the volume of water necessary to prepare the solution.
We can use the following equation to calculate the volume of more concentrated solution required:

where C1 is the concentration of the initial solution (C1 = 1.00 M), V1 is the volume required of the inital solution (that we'll calculate), C2 is the concentration of the final solution (C2 = 0.100 M) and V2 is the volume of the final solution (V2 = 50.0 mL).
Applying the values given by the question to the equation above, we'll have:

Thus, we would need 5.00 mL of the more concentrated solution.
Since the volume of the final solution is 50.0 mL and it corresponds to the volume of initial solution + volume of water, we can calculate the volume of water necessary as:

Thus, we would need 45.0 mL of water to prepare the solution.
Therefore, we can complete the sentence given as:
<em>"In order to prepare 50.0 mL of 0.100 M NaOH you will add </em>5.00 mL<em> of 1.00 M NaOH to </em>45.0 mL<em> of water"</em>