<span>Let's assume
that the oxygen gas has ideal gas behavior.
Then we can use ideal gas formula,
PV = nRT</span>
Where, P is the pressure of the gas (Pa), V is the volume of the gas
(m³), n is the number of moles of gas (mol), R is the universal gas
constant ( 8.314 J mol⁻¹ K⁻¹) and T is temperature in Kelvin.
<span>
P = 2.2 atm = 222915 Pa
V = 21 L = 21 x 10</span>⁻³ m³
n = ?
R = 8.314 J mol⁻¹ K⁻¹
<span>
T = 87 °C = 360 K
By substitution,
</span>222915 Pa x 21 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻<span>¹ x 360 K
n
= 1.56</span><span> mol</span>
<span>
Hence, 1.56 moles of the oxygen gas are </span><span>
left for you to breath.</span><span>
</span>
Answer:
- <em><u>Option A. </u></em><u><em>2KClO₃ → 2KCl + 3O₂</em></u>
Explanation:
There are five basic general types of chemical reactions:
- Synthesis or combination reaction
- Single replacement reactions
- Double replacement reactions
The given reactions are:
- <u>2KClO₃ → 2KCl + 3O₂</u>
Which is, indeed, a decomposition reaction because the reactant, KClO₃, is a single substance that undergoes a reaction in which it yields two new substances, known as products: KCl and O₂.
- <u>4Na + O₂ → 2Na₂O</u> is a synthesis or combination reaction because two reactants, Na and O₂, combine for the formation of one single new product, Na₂O.
- <u>ZnS + 3 O₂ → 2ZnO + 2SO₂ </u>is a single replacement reaction because oxygen is replacing Zn and S in ZnS to form ZnO and plus SO₂.
- <u>2NaBr + CaF₂ → 2NaF + CaBr₂ </u>is a double replacement reaction because two ions (Br⁻ from NaBr and F⁻ from CaF₂) are exchanging places with other two ions (Na⁺ from NaBr and Ca²⁺ from CaF₂) two form two new ionic compounds (NaF and CaBr₂).
Answer:
0.179kg/m3 hope that helps you out
Ionic bonds are formed due to tendency of a metal to donate an electron and tendency of non metal to gain an electron.