Answer:
True
Explanation:
In an uncompetitive inhibition, initially the substrate [S] binds to the active site of the enzyme [E] and forms an enzyme-substrate activated complex [ES].
The inhibitor molecule then binds to the enzyme- substrate complex [ES], resulting in the formation of [ESI] complex, thereby inhibiting the reaction.
This inhibition is called uncompetitive because the inhibitor does not compete with the substrate to bind on the active site of the enzyme.
Therefore, in an uncompetitive inhibition, the inhibitor molecule can not bind on the active site of the enzyme directly. The inhibitor can only bind to the enzyme-substrate complex formed.
Answer:
compared to sodium, silicon has a higher ionization energy meaning it takes more energy to remove electrons.
Explanation:
hope this helps
<u>can u please give me and Brainlist</u>
Answer:
C. Rate = k[H2]^2[O2]
Explanation:
Rate law only cares about REACTANTS. Since, rate law can only be determined experimentally, I am assuming the given reaction mechanism is elementary reaction from which we can write the rate law.
Only H2 and O2 are part of rate law since they are reactants and also the coefficient in front of H2 goes as exponent on rate law to indicate the order of H2 in the reaction.
Rate= k [H2]^2 [O2]
Moles= mass/Mr
Moles= 3.82/40
Moles= 0.0955 mol