Answer:
the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
Explanation:
Given: radius of disk, R = 2.0 cm = 2 × 10⁻² cm, surface charge density,σ = 6.3 μC/m² = 6.3 × 10⁻⁶ C/m², distance on central axis, z = 12 cm = 12 × 10⁻² cm.
The electric field, E at a point on the central axis of a charged disk is given by E = σ/ε₀(
)
Substituting the values into the equation, it becomes
E = σ/ε₀(
) = 6.3 × 10⁻⁶/8.854 × 10⁻¹²(
) = 7.12 × 10⁵(
) = 7.12 × 10⁵(1 - 0.9864) = 7.12 × 10⁵ × 0.0136 = 0.0968 × 10⁵ = 9.68 × 10³ N/C = 9.68 kN/C
Therefore, the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
Answer:
156.8kPa
Explanation:
The problem here is to convert mmHg to kPa;
We have been given:
1176mmHg and the problem is to convert to kPa;
1000Pa = 1kPa
1 mmHg = 133.322Pa
1176mmHg will give 1176 x 133.322 = 156787.1Pa
To kPa;
156.8kPa
<span> 2C2H2(g) + 5O2(g) → 4CO2(g) + 2H2O(g)
from the reaction 2 mol 4 mol
from the problem 5.4 mol 10.8 mol
M(CO2) = 12.0 +2*16.0 = 44.0 g/mol
10.8 mol CO2 * 44.0 g CO2/1 mol CO2 = 475.2 g CO2 </span>≈480 = 4.8 * 10² g
Answer is C. 4.8*10² g.
The arrangement of the elements in order of decreasing metallic character is: Rb, Zn, P, S, F, Ca, Co, Cr
<h3 /><h3>What are metals?</h3>
Metals are elements which are known by their special ability to form ions by a loss of electrons.
The increasing metallic character of metal is a measure of their ability to lose electrons.
Metallic character increases from right to left and down a group in the period table.
Metals are found to the left of the period table.
In conclusion, metals are known by their ability to lose electrons.
Learn more about metals at: brainly.com/question/25597694
#SPJ1