1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kati45 [8]
2 years ago
15

What is the equation used to find the angle of refraction? Identify each variable. (1 point)

Physics
1 answer:
VMariaS [17]2 years ago
8 0

Answer:

pictures please

Explanation:

I need a picture so I can tell you

You might be interested in
Where are the three seismographs used to find the epicenter of this earthquake located?
iogann1982 [59]
The seismographs are located in Minneapolis, Detroit, and Charleston.
3 0
3 years ago
Read 2 more answers
An attacker at the base of a castle wall 3.65 m high throws a rock straight up with speed 7.4m/s from a height of 1.55m above th
Natali5045456 [20]

a) Yes, the rock will reach the top

b) The final speed is 3.7 m/s

c) The change in speed is 2.4 m/s

d) The change in speed in the two situations do not agree

e) Because the kinetic energy depends quadratically on the speed, K\propto v^2

Explanation:

a)

The mechanical energy of the rock at the moment it is thrown from the ground is equal to the sum of its kinetic energy and its potential energy:

E=KE_i + PE_i = \frac{1}{2}mu^2 + mgh_i

where

m is the mass of the rock

u = 7.4 m/s is the inital speed

g=9.8 m/s^2 is the acceleration of gravity

h_i = 1.55 m is the initial height of the rock

Substituting, we find the initial mechanical energy of the rock

E=\frac{1}{2}m(7.4)^2 + m(9.8)(1.55)=42.6m [J]

In order to reach the top of the castle, the rock should have a mechanical energy of at least

E' = mgh'

where

h' = 3.65 m is the heigth of the top

Substituting,

E'=m(9.8)(3.65)=35.6m [J]

Since E > E', it means that the rock has enough mechanical energy to reach the top.

b)

The final mechanical energy of the rock at the top is

E=mgh'+ \frac{1}{2}mv^2 (1)

where:

v is the final speed of the rock at the top

Since the mechanical energy is conserved, this should be equal to the initial mechanical energy:

E=42.6 m [J] (2)

Therefore, equating (1) and (2), we can find the final speed of the rock:

mgh' + \frac{1}{2}mv^2 = 42.6m\\v=\sqrt{2(42.6-gh')}=\sqrt{2(42.6-(9.8)(3.65))}=3.7 m/s

c)

Since the motion of the rock is a free fall motion (constant acceleration equal to the acceleration of gravity), we can use the following suvat equation:

v^2 - u^2 = 2as

where

v is the final speed, at the bottom

u = 7.4 m/s is the initial speed of the rock, at the top

a=9.8 m/s^2 is the acceleration of gravity

s = 3.65 - 1.55 = 2.1 m is the vertical displacement of the rock

Solving for v, we find the final speed:

v=\sqrt{u^2+2as}=\sqrt{7.4^2 + 2(9.8)(2.1)}=9.8 m/s

Therefore, the change in speed is

\Delta v = v-u = 9.8 - 7.4 =2.4 m/s

d)

In the first situation (rock thrown upward), we have:

u = 7.4 m/s (initial speed)

v = 3.7 m/s (final speed)

So the change in speed is

\Delta v = v-u =3.7 - 7.4 = -3.7 m/s

While the change in speed in the second situation (rock thrown downward) is

\Delta v = 2.4 m/s

Therefore, we see that their magnitudes do not agree.

e)

In both situations, the change in kinetic energy of the rock is equal in magnitude to the change in gravitational potential energy, since the total mechanical energy is conserved.

The change in gravitational potential energy in the two situations is the same (because the change in height is the same), therefore the change in kinetic energy in the two situations is also the same.

However, the kinetic energy of the rock is not directly proportional to the speed, but to the square of the speed:

K\propto v^2

Since the initial speed is the same for both situation (7.4 m/s), but the change in kinetic energy has opposite sign in the two situations (negative when the rock is thrown upward, positive when thrown downward), the situation is not symmetrical, therefore in order to have the same magnitude of change in the kinetic energy, the change in speed must be larger when the kinetic energy involved is lower, so in the first situation.

Learn more about kinetic energy and about potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

6 0
4 years ago
Emily’s vacuum cleaner has a power rating of 200 watts. If the vacuum cleaner does 360,000 joules of work,
gtnhenbr [62]
Divide 360000 by 200 to get 1800 seconds, or half of hour.
7 0
4 years ago
The laboratory test that detects neutropenia is
bixtya [17]
It's absolute neutropihil count, also called ANC
4 0
4 years ago
Which major regions had the Romans controlled?
alexandr402 [8]
From 200 BC to around 14 AD, Rome had conquered most of Western Europe, Greece and the Balkans. Also the Middle East, and North Africa.
5 0
3 years ago
Other questions:
  • A long electric cable is suspended above the earth and carries a current of 345 A parallel to the surface of the earth. The eart
    12·1 answer
  • A plastic light pipe has an index of refraction of 1.48. For total internal reflection, what is the minimum angle of incidence i
    14·1 answer
  • The picture below shows the positions of the Earth, Sun, and Moon during an eclipse.
    12·2 answers
  • If two point sources that create circular waves are moved closer together, what happens to the spacing between the nodal and ant
    13·1 answer
  • A plane is flying 2400 miles from a to
    7·1 answer
  • A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of negligible mass and length r. If I1 is the mo
    8·1 answer
  • Using the midpoint and the distance formulas, calculate he coordinate of the midpoint and the length of the segment.
    12·1 answer
  • A solid nonconducting sphere of radius R = 5.4 cm has a nonuniform charge distribution of volume charge density rho = (14.3 pC/m
    6·1 answer
  • I need help please and thanks
    5·1 answer
  • Buildings
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!