Freezing.................
Answer:
t< 75 nm
Explanation:
A soap bubble is a thin film where when the beam enters the film it has a 180º phase change due to the refractive index and the wavelength changes between
λ = λ₀ / n
In the case of constructive interference in the curve of the spherical film it is
2 nt = (m + ½) λ₀
Where t is the thickness of the film and n the refractive index that does not indicate that we use that of water n = 1.33, m is an integer. The thickness of the film for the first interference (m = 0) is
t = λ₀ / 4 n
A thickness less than this gives destructive interference.
Let's look for the thickness for the visible spectrum
Violet light λ₀ = 400 nm = 400 10⁻⁹ m
t₁ = 400 10⁻⁹ / 4 1.33
t₁ = 75.2 10-9 m
Red light λ₀ = 700 nm = 700 10⁻⁹ m
t₂ = 700 10⁻⁹ / 4 1.33
t₂ = 131.6 10⁻⁹ m
Therefore, for all wavelengths to have destructive interference, the thickness must be less than 75 10⁻⁹ m = 75 nm
b) a film like eta is very thin, it is achieved when gravity thins the pomp, but any movement or burst of air breaks it,
Answer:
The distance between the two slits is 1.2mm.
Explanation:
The physicist Thomas Young establishes, through its double slit experiment, a relationship between the interference (constructive or destructive) of a wave, the separation between the slits, the distance between the two slits to the screen and the wavelength.
(1)
Where
is the distance between two adjacent maxima, L is the distance of the screen from the slits,
is the wavelength and d is the separation between the slits.
If light pass through two slits a diffraction pattern in a screen will be gotten, at which each bright region corresponds to a crest, a dark region to a trough, as consequence of constructive interference and destructive interference in different points of its propagation to the screen.
Therefore, d can be isolated from equation 1.
(2)
Notice that it is necessary to express L and
in units of millimeters.
⇒ 
⇒ 
Hence, the distance between the two slits is 1.2mm.
At the start, the ball is at rest and therefore, u=0 m/s. As it leaves the bat, v= 50 m/s
From equations of motion, v=u+at = at (since u=o)
a=v/t = 50/0.04 = 121250 m/s^2
From Newton's second law,
F=ma = 145/1000 *1250 = 181.25 N
Interstellar gas clouds are common in many galaxy, like the Orion nebulae which many young stars are being born. A typical nebula is many light years in diameter and contains enough material mass to make several thousand stars the size of our sun. The majority of the gas in nebulae consist of molecules of hydrogen and helium-but most nebulae also contain atoms of other elements. All known element in our periodic table is also being made inside this crucible of this immense hot gas. The source of the organic molecules is still a mystery. Irregularities in the density of the gas causes a net gravitational force that pull the gas molecules close together.