Answer:
163.5m
this is how far the doggo would go
(In theory)
If I'm wrong I apologize
Answer:

Explanation:
As we know that when runner is moving on straight track then the net force on his feet is given as

while when runner is moving on circular track then we have




now percentage change is given as



Answer: 15.6 metres
Explanation:
Given that:
length of wave (λ)= ?
Frequency of wave F = 28 Hertz
Speed of wave (V) = 437 m/s
The wavelength is the distance covered by the wave in one complete cycle. It is measured in metres, and represented by the symbol λ.
So, apply V = F λ
Make λ the subject formula
λ = V / F
λ = 437 m/s / 28 Hertz
λ = 15.6 m
Thus, the length of the wave is 15.6 metres
In a parallel circuit, the total resistance calculated from the individual resistances is computed from the formula: 1/Rt = 1/R1 + 1/R2. substituting R1 and R2, then
1/Rt = 1/7 + 1/49
1/Rt = 1/6.125 = 1/ 49/8
Rt = 49/8 <span>Ω
The total resistance hence is </span>49/8 Ω
<u>Answer: </u>
<em>Considering the II law of thermodynamics</em>
<em>From the figure</em>
<em>Out put of energy: </em>
Heat supplied from the source/ reservoir (Q₁) - Heat rejected to the surroundings from the system (Q) = Q₁ - Q₂. Also known as Net work done on the system.
<em>Input of energy: </em>
Amount of heat energy supplied to the system from the source (Q₁ ).
Efficiency (H.E) = η = Output÷ Input
η = (Q₁ - Q₂) ÷ Q₁
OR η = Wnet ÷ Q₁ ; since Wnet = (Q₁ - Q₂)