It has to do with mechanical engineering
Answer:
a) 3.607 m
b) 1.5963 m
Explanation:
See that attached pictures for explanation.
Answer:
The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3
Heat flux is 9.67×10^7 Btu/hrft^2
Explanation:
Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr
Area (A) = πD^2/4
Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft
A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2
Volume (V) = A × Length
L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft
V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3
Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3
Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2
Answer: (a) 36.18mm
(b) 23.52
Explanation: see attachment
Answer:
The angular velocity is 7.56 rad/s
the maximum water height is 2 ft
Explanation:
The z-position as a function of r is equal to
(eq. 1)
where
h0 = initial height = 1 ft
w = angular velocity
R = radius of the cylinder = 1.5 ft
zs(r) = 0 when the free surface is lowest at the centre
Replacing and clearing w

if you consider the equation 1 for the free surface at the edge is equal to
