Tin is an element called Stannum and has the symbol Sn. Molar mass is the mass of 1 mol of a compound, 1 mol of any substance is made of 6.022 x 10²³ units, these units could be atoms making up an element or molecules making up a compound.
While the number of atoms making up 1 mol is the same for any element, the weight of 1 mol of substance varies from one another.
In tin(Sn) molar mass - 118.71 g/mol
In 118.71 g - there's 1 mol of tin
therefore in 37.6 g of tin - 1 x 37.6 / 118.71 = 0.31 mol
In 37.6 g of tin, there's 0.31 mol
Answer:
1.
was the
value calculated by the student.
2.
was the
of ethylamine value calculated by the student.
Explanation:
1.
The
value of Aspirin solution = 2.62
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=10^{-2.62}=0.00240 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-2.62%7D%3D0.00240%20M)
Moles of s asprin = 
Volume of the solution = 0.600 L
The initial concentration of Aspirin = c = 

initially
c 0 0
At equilibrium
(c-x) x x
The expression of dissociation constant :
:



was the
value calculated by the student.
2.
The
value of ethylamine = 11.87


![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=10^{-2.13}=0.00741 M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-2.13%7D%3D0.00741%20M)
The initial concentration of ethylamine = c = 0.100 M

initially
c 0 0
At equilibrium
(c-x) x x
The expression of dissociation constant :
:



was the
of ethylamine value calculated by the student.
I really hope this helps I’ve been there too and I’m just doing this so I get the 20 words and I have the picture
Answer:
D
Explanation:I alredy know this i am in 7th gread
The arrangement of molecules within the 3 phases of matter are shown in the picture.
For the solid, the molecules are packed closely together. They don't have much space to move, so they just practically vibrate. For the liquid, the molecules are relatively farther from each other. The liquid molecules can flow freely but not as much as the gases. In the gases, the molecules are very far from each other. They are very sensitive to slight changes of pressure, volume and temperature.