1) The distance travelled by the rocket can be found by using the basic relationship between speed (v), time (t) and distance (S):

Rearranging the equation, we can write

In this problem, v=14000 m/s and t=150 s, so the distance travelled by the rocket is

2) We can solve the second part of the problem by using the same formula we used previously. This time, t=300 s, so we have:

Academic- affect on substances, how it works
Scientific- helping cancer, making weapons
Answer:
96.21 ft/s
Explanation:
To solve this, you only need to use one expression which is:
Vf² = Vo² + 2gh
g = 9.8 m/s²
However, this exercise is talking in feet, so convert the gravity to feet first:
g = 9.8 * 3.28 = 32.15 ft/s²
Vo is zero, because it's a free fall and in free fall the innitial speed is always zero. With this, let's calculate the speed at 2 seconds, with a height of 64 ft, and then with the 256 ft:
V1 = √2*32.15*64
V1 = 64.15 ft/s
V2 = √2*32.15*256
V2 = 128.3 ft/s
So the average rate is:
V = 128.3 + 64.15 / 2
V = 96.22 ft/s
Rod is 450mm and disk has a radius of 75mm So there is a pin holding the assembly upwards which is when Θ=0 and at the pin there is a torsional spring with constant of k=20N m/rad. One end of the rod is attached to the pin and the other is attached to the disk.