1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Savatey [412]
3 years ago
11

A hockey puck is traveling to the left with a velocity of v=10 when it is struck by the hockey stick

Physics
1 answer:
Lera25 [3.4K]3 years ago
4 0
We have to calculate the impulse of a hockey puck.
Imp = m * ( v 1 - v 2 ) = m * Δ v
v 1 = - 10 i m/s,
v 2 = ( 20 * cos 40° ) i + ( 20 * sin 40° ) j =
= ( 20 * 0.766 ) i + ( 20 * 0.64278 ) j = ( 15.32 i + 12.855 j ) m/s
Δ v = ( 15.32 i + 12.855 j ) - ( - 10 i ) =
= 15.32 i + 12.855 j + 10 i = 25.32 i + 12.855 j
| Δv | = √ ( 25.32² + 12.855²) = √806.35 = 28.4 m/s
Imp = 0.2 kg * 28.4 m/s = 5.68 N-s
Answer: D ) 5.68 N-s. 
 
You might be interested in
1.Convert 340 cm into m *(answer=0.34m)
Nataly [62]

Answer:

<em>1</em><em>.</em><em>for </em><em>the </em><em>first </em><em>one </em><em>100c</em><em>e</em><em>n</em><em>t</em><em>i</em><em>m</em><em>e</em><em>t</em><em>e</em><em>r</em><em>s</em><em> </em><em>make </em><em>1</em><em> </em><em>meter </em><em>therefore</em>

<em>100c</em><em>m</em><em>-</em><em>1</em><em>m</em>

<em>3</em><em>4</em><em>0</em><em>c</em><em>m</em><em>-</em><em>x</em>

<em>3</em><em>4</em><em>0</em><em>/</em><em>100</em>

<em>=</em><em>3</em><em>.</em><em>4</em>

<em>the </em><em>answer </em><em>is </em><em>supposed</em><em> to</em><em> be</em><em> </em><em>3</em><em>.</em><em>4</em><em>,</em><em> maybe</em><em> </em><em>there's</em><em> </em><em>a </em><em>mistake</em><em> </em><em>with </em><em>the </em><em>question</em><em> </em><em>or </em><em>the </em><em>answer</em>

<em>2</em><em>.</em><em>t</em><em>h</em><em>e</em><em> </em><em>weight</em><em> </em><em>of </em><em>a </em><em>body </em><em>is </em><em>given </em><em>by </em><em>the </em><em>formula</em>

<em>mass×</em><em>g</em><em>r</em><em>a</em><em>v</em><em>i</em><em>t</em><em>y</em><em>,</em><em>in </em><em>this </em><em>case </em><em>the </em><em>mass </em><em>is </em><em>7</em><em>5</em><em>k</em><em>g</em><em> </em><em>and </em><em>the </em><em>gravity </em><em>is </em><em>9</em><em>.</em><em>8</em>

<em>weight</em><em>=</em><em>7</em><em>5</em><em>×</em><em>9</em><em>.</em><em>8</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>7</em><em>3</em><em>5</em><em>N</em>

<em>3</em><em>.</em><em>f</em><em>o</em><em>r</em><em> </em><em>this </em><em>one </em><em>the </em><em>mass </em><em>of </em><em>a </em><em>body </em><em>is </em><em>given</em><em> by</em><em> the</em><em> formula</em>

<em>mass=</em><em>weight/</em><em>gravity</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>4</em><em>2</em><em>0</em><em>/</em><em>9</em><em>.</em><em>8</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>4</em><em>2</em><em>.</em><em>8</em><em>k</em><em>g</em>

<em>I </em><em>hope</em><em> this</em><em> helps</em>

4 0
3 years ago
Two pulses are moving along a string. One pulse is
raketka [301]

Answer:

The answer is the 3rd option!

6 0
2 years ago
What is endurance? a). the ability to run faster b). a combination of balance and coordination c). how much you can stretch d).
Alex787 [66]

Answer:

D. the ability to exercise for longer periods of time

Explanation:

For example, when someone does endurance training, they are stretching their body's ability to do a certain exercise for longer times as opposed to increasing strength.

8 0
3 years ago
A uniform disk with mass 35.2 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is stati
Sergio [31]

Answer:

a) v = 1.01 m/s

b) a = 5.6 m/s²

Explanation:

a)

  • If the disk is initially at rest, and it is applied a constant force tangential to the rim, we can apply the following expression (that resembles Newton's 2nd law, applying to rigid bodies instead of point masses) as follows:

       \tau = I * \alpha  (1)

  • Where τ is the external torque applied to the body, I is the rotational inertia of the body regarding the axis of rotation, and α is the angular acceleration as a consequence of the torque.
  • Since the force is applied tangentially to the rim of the disk, it's perpendicular to the radius, so the torque can be calculated simply as follows:
  • τ = F*r (2)
  • For a solid uniform disk, the rotational inertia regarding an axle passing through its center  is just I = m*r²/2 (3).
  • Replacing (2) and (3) in (1), we can solve for α, as follows:

       \alpha = \frac{2*F}{m*r} = \frac{2*34.5N}{35.2kg*0.2m} = 9.8 rad/s2 (4)

  • Since the angular acceleration is constant, we can use the following kinematic equation:

        \omega_{f}^{2}  - \omega_{o}^{2} = 2*\Delta \theta * \alpha (5)

  • Prior to solve it, we need to convert the angle rotated from revs to radians, as follows:

       0.2 rev*\frac{2*\pi rad}{1 rev} = 1.3 rad (6)

  • Replacing (6) in (5), taking into account that ω₀ = 0 (due to the disk starts from rest), we can solve for ωf, as follows:

       \omega_{f} = \sqrt{2*\alpha *\Delta\theta} = \sqrt{2*1.3rad*9.8rad/s2} = 5.1 rad/sec (7)

  • Now, we know that there exists a fixed relationship the tangential speed and the angular speed, as follows:

        v = \omega * r (8)

  • where r is the radius of the circular movement. If we want to know the tangential speed of a point located on the rim of  the disk, r becomes the radius of the disk, 0.200 m.
  • Replacing this value and (7) in (8), we get:

       v= 5.1 rad/sec* 0.2 m = 1.01 m/s (9)

b)    

  • There exists a fixed relationship between the tangential and the angular acceleration in a circular movement, as follows:

       a_{t} = \alpha * r (9)

  • where r is the radius of the circular movement. In this case the point is located on the rim of the disk, so r becomes the radius of the disk.
  • Replacing this value and (4), in (9), we get:

       a_{t}  = 9.8 rad/s2 * 0.200 m = 1.96 m/s2 (10)

  • Now, the resultant acceleration of a point of the rim, in magnitude, is the vector sum of the tangential acceleration and the radial acceleration.
  • The radial acceleration is just the centripetal acceleration, that can be expressed as follows:

       a_{c} = \omega^{2} * r  (11)

  • Since we are asked to get the acceleration after the disk has rotated 0.2 rev, and we have just got the value of the angular speed after rotating this same angle, we can replace (7) in (11).
  • Since the point is located on the rim of the disk, r becomes simply the radius of the disk,, 0.200 m.
  • Replacing this value and (7) in (11) we get:

       a_{c} = \omega^{2} * r   = (5.1 rad/sec)^{2} * 0.200 m = 5.2 m/s2 (12)

  • The magnitude of the resultant acceleration will be simply the vector sum of the tangential and the radial acceleration.
  • Since both are perpendicular each other, we can find the resultant acceleration applying the Pythagorean Theorem to both perpendicular components, as follows:

       a = \sqrt{a_{t} ^{2} + a_{c} ^{2} } = \sqrt{(1.96m/s2)^{2} +(5.2m/s2)^{2} } = 5.6 m/s2 (13)

6 0
2 years ago
If an object undergoes a change in momentum of 10 kg m/s in 3 s ,then the force acting on it is
Paha777 [63]

Answer:

Force = 3.333 Newton

Explanation:

Given the following data;

Change in momentum = 10 Kgm/s

Time = 3 seconds

To find the force acting on it;

In Physics, the change in momentum of a physical object is equal to the impulse experienced by the physical object.

Mathematically, it is given by the formula;

Force * time = mass * change in velocity

Impulse = force * time

Substituting into the formula, we have;

10 = force * 3

Force = 10/3

Force = 3.333 Newton

8 0
2 years ago
Other questions:
  • A ball is thrown straight up in the air. When will its kinetic energy be the least before it is caught? A. at the start of its f
    10·2 answers
  • A tray is moved horizontally back and forth in simple harmonic motion at a frequency of f = 2.20 Hz. On this tray is an empty cu
    5·1 answer
  • A boy takes hold of a rope to pull a wagon (m = 50 kg) on a surface with a static coefficient of friction μS = 0.25. Calculate t
    6·2 answers
  • What do we call the tide that occurs when constructive interference between lunar and solar bulges produces a large tidal range?
    8·1 answer
  • A car traveling at 50 km/h hits a bridge abutment. A passenger in the car moves forward a distance of 61 cm (with respect to the
    15·2 answers
  • A dielectric material is inserted between the charged plates of a parallel-plate capacitor. Do the following quantities increase
    11·1 answer
  • Aristotle supported which of these views?
    8·1 answer
  • A sky diver of mass 53 kg can slow herself to a constant speed of 95 km/h by orienting her body horizontally, looking straight d
    15·1 answer
  • a vertical solid steel post 29cm in diameter and 2.0m long is required to support a load of 8200kg, ignore the weight of the pos
    5·1 answer
  • What is the basic form of matter which cannot be broken down any further?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!