The mass of a substance is given in atomic mass units and is calculated by adding the average atomic masses of all the atoms in the substance's chemical formula.
<h3>What empirical formula represents the total average atomic mass of every atom?</h3>
The Method The average atomic masses of all the atoms included in a formula's representation are added to get the mass of any molecule, formula unit, or ion. It has no bearing on the number of significant figures because the number of atoms is an exact quantity. One H2O molecule weighs 18.02 amu on average.
<h3>What connection exists between the empirical formula and the molecular formula?</h3>
You can determine the number of atoms of each element in a molecule using its molecular formula. These empirical formulations provide the most basic or reduced elemental ratio of a compound. The empirical formula and the molecular formula of a substance are same if the molecular formula can no longer be decreased.
To know more about atomic mass visit:-
brainly.com/question/17067547
#SPJ4
The spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.
Explanation:
When a spring is stretched or compressed its length changes by an amount x from its equilibrium length then the restoring force is exerted.
spring constant is k = 1.00 * 10^3 N/m
mass is x = 20.0 cm
According to Hooke's law, To find restoring force,
F = - kx
= - 1.00 *10 ^3 * 20.0
F = 20000 N/m
Thus, the spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.
Using the density equation and clearing mass:
Given parameters:
Mass of the body = 200g
Force on the body = 10N
Unknown parameters:
Acceleration produced by the force = ?
To solve this problem we must first define force in terms of mass and acceleration. This is possible due to the Newton's first law of motion.
Force = mass x acceleration
Here the unknown is acceleration and we can easily solve for it.
But we must take the mass to kilogram in order for it to cancel out.
1000g = 1 kg
200g = x kg =
= 0.2kg
Now input the parameters and solve;
10 = 0.2 x acceleration
Acceleration =
= 50m/s²
The acceleration produced by the body is 50m/s²
Answer:
Distance between two adjacent wave crests = 24m
Explanation:
Distance= speed × time
Distance traveled by waves in 60 seconds (15 crests)= 15 × distance
15 × distance = 6,0 (meters/second) × 60 seconds
distance = (360 meters) / 15 = 24 meters (between two adyacent waves)