Answer:
1.20atm
Explanation:
Given parameters:
Partial pressure of gas 1 = 0.35atm
Partial pressure of gas 2 = 0.20atm
Partial pressure of gas 3 = 0.65atm
Unknown:
Total pressure of the gas mixture = ?
Solution:
To solve this problem, we need to recall and understand the Dalton's law of partial pressure.
Dalton's law of partial pressure states that "the total pressure of a mixture of gases is equal to the sum of the partial pressure of the constituent gases".
Total pressure =Pressure of gas(1 + 2 + 3)
The partial pressure is the pressure a gas would exert if it alone occupied the volume of the gas mixture.
Now we substitute;
Total pressure = (0.35 + 0.20 + 0.65)atm = 1.20atm
Answer:
Explanation:
Enertia is an integral part of Newton's first law of motion.
It is the tendency of an object to <u>stay at rest</u> or <u>to continue moving</u> until and unless <u>any external unbalanced force</u>, (like, applied force or force of tension or frictional force ) is applied to either move it from rest or change its speed(in other words, accelerate it!!).
Example below, is of ball at rest (fig1) and if this ball is moving straight on a frictionless surface(like ice) it will keep moving!! until, we push it or pull it.
Answer:
Option B, aspirin’s ester group provides greater digestibility to aspirin
Explanation:
Aspirin ester group has three parts
- carboxylic acid functional group (R-COOH)
- ester functional group (R-O-CO-R')
- aromatic group (benzene ring)
Aspirin is a weak acid and hence it cannot dissolve in water readily. The reaction of Aspirin ester group with water is as follows -
aspirin
(acetylsalicylic acid) + water → salicylic acid + acetic acid
(ethanoic acid)
Aspirin passes through the stomach and remains unchanged until it reaches the intestine where it hydrolyses ester to form the active compound.
Answer:
see explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem
1.70 × 10³ seconds
<h3>Explanation </h3>
+ 2 e⁻ → 
It takes two moles of electrons to reduce one mole of cobalt (II) ions and deposit one mole of cobalt.
Cobalt has an atomic mass of 58.933 g/mol. 0.500 grams of Co contains
of Co atoms. It would take
of electrons to reduce cobalt (II) ions and produce the
of cobalt atoms.
Refer to the Faraday's constant, each mole of electrons has a charge of around 96 485 columbs. The 0.01697 mol of electrons will have a charge of
. A current of 0.961 A delivers 0.961 C of charge in one single second. It will take
to transfer all these charge and deposit 0.500 g of Co.