1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mekhanik [1.2K]
2 years ago
12

Please I need help! This is the last question I need for this assignment!

Physics
1 answer:
Ne4ueva [31]2 years ago
6 0

Answer:

When the same amount of heat is added to cold sand and cold water, the temperature change of sand will be higher because of its lower specific heat capacity.

What is specific heat capacity?

Specific heat capacity is the quantity

of heat required to raise a unit mass of

a substance by 1 kelvin.

Specific heat capacity of water and sand

{<em>refer to the above attachment}</em>

Δθ = Q/mc

Thus, for an equal mass of water and sand, when the same amount of heat is added to cold sand and cold water, the temperature change of sand will be higher because of its lower specific heat capacity.

You might be interested in
Which tools would be use to find an irregularly shaped object’s mass and volume?
madreJ [45]
Scales for weight
Any beaker to measure the volume of liquid displaced
3 0
3 years ago
When a low-pressure gas of hydrogen atoms is placed in a tube and a large voltage is applied to the end of the tube, the atoms w
FromTheMoon [43]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The value of n is n =7

Explanation:

    From the question we are told that

          The value of m = 2

            For every value of m, n = m+ 1, m+2,m+3,....

           The modified version of  Balmer's formula is \frac{1}{\lambda}  = R [\frac{1}{m^2} - \frac{1}{n^2}  ]

             The Rydberg constant has a value of R = 1.097 *10^{7} m^{-1}

The objective of this solution is to obtain the value of n for which the wavelength of the Balmer series line is smaller than 400nm

   

For m = 2 and n =3

    The wavelength is

                          \frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{3^2}  ]

                          \lambda = \frac{1}{1523611.1112}

                             \lambda = 656nm

For m = 2 and n = 4

    The wavelength is

                          \frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{4^2}  ]

                          \lambda = \frac{1}{2056875}

                             \lambda = 486nm

For m = 2 and n = 5

    The wavelength is

                          \frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{5^2}  ]

                          \lambda = \frac{1}{2303700}

                             \lambda = 434nm

For m = 2 and n = 6

    The wavelength is

                          \frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{6^2}  ]

                          \lambda = \frac{1}{2422222}

                             \lambda = 410nm

For m = 2 and n = 7

    The wavelength is

                          \frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{7^2}  ]

                          \lambda = \frac{1}{2518622}

                             \lambda = 397nm

So the value of n is  7

7 0
3 years ago
Two technicians are discussing a problem where the brake pedal travels too far before the vehicle starts to slow. Technician A s
iVinArrow [24]

Answer:

Technician A

Explanation:

If Technician B was correct, and the master cylinder is defective - then no braking action would occur.

This is not true however, as some breaking action eventually occurs, meaning it must be out of adjustment.

3 0
4 years ago
The maximum distance particles of the medium move when a wave passes through them is wave.
joja [24]

Answer:

amplitude

Explanation:

6 0
2 years ago
Type the correct answer in the box. Round your answer to the nearest whole number. Calculate the man’s mass. (Use PE = m × g × h
Blababa [14]

Answer:

56 kg

Explanation:

The change in potential energy of the man is given by:

\Delta U = mg \Delta h

where

m is the man's mass

g is the gravitational acceleration

\Delta h is the change in height of the man

In this problem, we have:

\Delta U=4620 J is the gain in potential energy

g = 9.8 m/s^2 is the gravitational acceleration

\Delta h=8.4 m is the change in height

Re-arranging the equation and substituting the numbers, we find the mass:

m=\frac{\Delta U}{g\Delta h}=\frac{4620 J}{(9.8 m/s^2)(8.4 m)}=56 kg

6 0
3 years ago
Read 2 more answers
Other questions:
  • If a girl is running along a straight road with a uniform velocity 1.5m/s find her acceleration.
    9·1 answer
  • What is thermal equilibrium?
    13·2 answers
  • Explain how a covalent compound can be a strong electrolyte and give an example.
    7·1 answer
  • You have a large metal sphere that starts out isolated and has no net charge. Then you bring a positively charged rod near it wi
    11·1 answer
  • 2. What is the weight of an object if 75 J of<br> work is done to lift it uniformly 6.0 m?
    15·1 answer
  • The first excited state of a particular atom in a gas is 5.7 eV above the ground state. A moving electron collides with one of t
    15·1 answer
  • An 8.0g bullet, moving at 400 m/s, goes through a stationary block of wood in 4.0 x 10^-4s, emerging at a speed of 100 m/s. (a)
    9·1 answer
  • 5. A ball weighing 10 kg rolls 200 m down a frictionless incline with a 50 degree angle to the horizontal. If the ball’s initial
    6·1 answer
  • How are reflectivity and solubility related?
    12·2 answers
  • Your friend phred says ""i decided to make one of those online personality tests as a project in my psychology class. how hard c
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!