Scales for weight
Any beaker to measure the volume of liquid displaced
Complete Question
The complete question is shown on the first uploaded image
Answer:
The value of n is 
Explanation:
From the question we are told that
The value of m = 2
For every value of 
The modified version of Balmer's formula is ![\frac{1}{\lambda} = R [\frac{1}{m^2} - \frac{1}{n^2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%20%20%3D%20R%20%5B%5Cfrac%7B1%7D%7Bm%5E2%7D%20-%20%5Cfrac%7B1%7D%7Bn%5E2%7D%20%20%5D)
The Rydberg constant has a value of 
The objective of this solution is to obtain the value of n for which the wavelength of the Balmer series line is smaller than 400nm
For m = 2 and n =3
The wavelength is
![\frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{3^2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%20%7D%20%3D%20%281.097%20%2A%2010%5E7%29%5B%5Cfrac%7B1%7D%7B2%5E2%7D%20-%20%5Cfrac%7B1%7D%7B3%5E2%7D%20%20%5D)


For m = 2 and n = 4
The wavelength is
![\frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{4^2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%20%7D%20%3D%20%281.097%20%2A%2010%5E7%29%5B%5Cfrac%7B1%7D%7B2%5E2%7D%20-%20%5Cfrac%7B1%7D%7B4%5E2%7D%20%20%5D)


For m = 2 and n = 5
The wavelength is
![\frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{5^2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%20%7D%20%3D%20%281.097%20%2A%2010%5E7%29%5B%5Cfrac%7B1%7D%7B2%5E2%7D%20-%20%5Cfrac%7B1%7D%7B5%5E2%7D%20%20%5D)


For m = 2 and n = 6
The wavelength is
![\frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{6^2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%20%7D%20%3D%20%281.097%20%2A%2010%5E7%29%5B%5Cfrac%7B1%7D%7B2%5E2%7D%20-%20%5Cfrac%7B1%7D%7B6%5E2%7D%20%20%5D)


For m = 2 and n = 7
The wavelength is
![\frac{1}{\lambda } = (1.097 * 10^7)[\frac{1}{2^2} - \frac{1}{7^2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%20%7D%20%3D%20%281.097%20%2A%2010%5E7%29%5B%5Cfrac%7B1%7D%7B2%5E2%7D%20-%20%5Cfrac%7B1%7D%7B7%5E2%7D%20%20%5D)


So the value of n is 7
Answer:
Technician A
Explanation:
If Technician B was correct, and the master cylinder is defective - then no braking action would occur.
This is not true however, as some breaking action eventually occurs, meaning it must be out of adjustment.
Answer:
56 kg
Explanation:
The change in potential energy of the man is given by:

where
m is the man's mass
g is the gravitational acceleration
is the change in height of the man
In this problem, we have:
is the gain in potential energy
g = 9.8 m/s^2 is the gravitational acceleration
is the change in height
Re-arranging the equation and substituting the numbers, we find the mass:
