Answer:
Positive
Explanation:
The leaves will diverge further: The positive charge on the leaves has increased further. This occurs when positive charge is produced on the leaves by the charged object. This is quite possible only when the object is positively charged.
Answer:
Explanation:
an object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
Answer:
his is an example of the transformation of gravitational potential energy into kinetic energy
Explanation:
The game of juggling bowling is a clear example of the conservation of mechanical energy,
when the bolus is in the upper part of the path mechanical energy is potential energy; As this energy descends, it becomes kinetic energy where the lowest part of the trajectory, just before touching the hand, is totally kinetic.
At the moment of touching the hand, a relationship is applied that reverses the value of the speed, that is, now it is ascending and the cycle repeats.
Therefore this is an example of the transformation of gravitational potential energy into kinetic energy
Answer:

Explanation:
The Coulomb's Law gives the force by the charges:

Let us denote the positon of the charge q on the y-axis as 'y'.
The force between 'Q' and'q' is

where Θ is the angle between
and x-axis.

whereas

Finally, the x-component of the net force is

Answer:


Explanation:
Impulse and Momentum
They are similar concepts since they deal with the dynamics of objects having their status of motion changed by the sudden application of a force. The momentum at a given initial time is computed as

When a force is applied, the speed changes to
and the new momentum is

The change of momentum is

The impulse is equal to the change of momentum of an object and it's defined as the average net force applied times the time it takes to change the object's motion

Part 1
The T-ball initially travels at 10 m/s and then suddenly it's stopped by the glove. The final speed is zero, so

The impulse is


The magnitude is

Part 2
The force can be computed from the formula

The direction of the impulse the T-ball receives is opposite to the direction of the force exerted by the ball on the glove, thus 

