Answer:
the mass of the air in the classroom = 2322 kg
Explanation:
given:
A classroom is about 3 meters high, 20 meters wide and 30 meters long.
If the density of air is 1.29 kg/m3
find:
what is the mass of the air in the classroom?
density = mass / volume
where mass (m) = 1.29 kg/m³
volume = 3m x 20m x 30m = 1800 m³
plugin values into the formula
1.29 kg/m³ = <u> mass </u>
1800 m³
mass = 1.29 kg/m³ ( 1800 m³ )
mass = 2322 kg
therefore,
the mass of the air in the classroom = 2322 kg
Answer:
Option (e)
Explanation:
If a mass attached to a spring is stretched and released, it follows a simple harmonic motion.
In simple harmonic motion, velocity of the mass will be maximum, kinetic energy is maximum and acceleration is 0 at equilibrium position (at 0 position).
At position +A, mass will have the minimum kinetic energy, zero velocity and maximum acceleration.
Therefore, Option (e) will be the answer.
Answer:
A. Inertial Confinement and B. Magnetic Confinement
For Ethernet, if an adapter determines that a frame it has just received is addressed to a different adapter
a. it discards the frame without sending an error message to the network layer
b. it sends a NACK (not acknowledged frame) to the sending host
c. it delivers the frame to the network layer, and lets the network layer decide what to do
d. it discards the frame and sends an error message to the network layer
Answer:
Option A
Explanation:
The nodal address has to match the signal message address for it to function well but if the it doesn't match the nodal receiver address, it disregards it.
Answer:
In fission, energy is gained by splitting apart heavy atoms, for example uranium, into smaller atoms such as iodine, caesium, strontium, xenon and barium, to name just a few. However, fusion is combining light atoms, for example two hydrogen isotopes, deuterium and tritium, to form the heavier helium.
Explanation:
I hope this helped you
(Sorry If it didn't)