C The number and types of bonds within the molecule.
Explanation:
In a molecule, the number and types of bonds present determines the amount of available energy therein.
When bonds are broken or formed, energy is usually released.
- Elements combine with one another in order to attain stability in this state.
- Through this process, they form bonds by attraction.
- Where atoms exchange their valence electrons by losing or gaining it, electrovalent bonds form.
- In covalent molecules, electrons are usually shared between atoms.
- An attraction result from this type of interaction.
- The bond formed stores energy in the process.
- When bonds are broken, energy is usually released. The energy accrues when the bond was being formed.
- In molecules, we have covalent bond.
Learn more:
Bond brainly.com/question/7213980
Covalent bonds brainly.com/question/5258547
#learnwithBrainly
Answer: B
Explanation: the moon is smaller and contains less mass, therefore its gravitational pull is less than that of Earth's.
Explanation:
1.
Cu(NO3)2 + 2NaCl(aq) --> CuCl2(aq) + 2NaNO3(aq)
2.
Cu(NO3)2 + 2NaOH(aq) --> Cu(OH)2(s) + 2NaNO3(aq)
A light blue precipitate of Cu(OH)2 is formed and NaNO3 in solution.
3.
Cu(NO3)2(aq) --> Cu2+(aq) + 2NO3^-2(aq)
2NaOH(aq) --> 2Na+(aq) + 2OH-(aq)
Cu2+(aq) + 2OH-(aq) --> Cu(OH)2(aq)
2Na+(aq) + 2NO3^-2(aq) --> 2NaNO3(aq)
4.
The reaction in both Questions 1 and 2 is called Double displacement reaction. A double-replacement reaction exchanges the cations and/or or the anions of two ionic compounds. A precipitation reaction is a double-replacement reaction in which one product is a solid precipitate (precipitated) while the other in solution.
Since the cation and anions in Qustion 1 were exchanged, the same was done for Question 2, hence the identity of the precipitate in Question 2 was got.
The segment that represents melting is time (minutes) and temperature.
Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54