Answer:
a) 
2 moles of Zinc sulphide in solid form reacts with 3 moles of Oxygen in gaseous form to give 2 moles of Zinc oxide in solid form and 2 moles of sulphur dioxide in gaseous form.
b) 
1 mole of calcium hydride in solid form reacts with 2 moles of liquid water to give 1 mole of calcium hydroxide dissolved in water and 2 moles of hydrogen in gaseous form.
The chemical reactions are written by writing the chemical formula of the reactants on left side of the arrow followed by chemical formula of the products. The number of atoms of each element must be balanced to follow the law of conservation of mass.
Answer:
9.8×10^-4...... is the answer
Answer:
In chemistry and quantum mechanics, an orbital is a mathematical function that describes the wave-like behavior of an electron, electron pair, or (less commonly) nucleons. An orbital can contain two electrons with paired spins and is often associated with a specific region of an atom.
Explanation:
B. White Dwarf.
<h3>Explanation</h3>
The star would eventually run out of hydrogen fuel in the core. The core would shrink and heats up. As the temperature in the core increases, some of the helium in the core will undergo the triple-alpha process to produce elements such as Be, C, and O. The triple-alpha process will heat the outer layers of the star and blow them away from the core. This process will take a long time. Meanwhile, a planetary nebula will form.
As the outer layers of gas leave the core and cool down, they become no longer visible. The only thing left is the core of the star. Consider the Chandrasekhar Limit:
Chandrasekhar Limit:
.
A star with core mass smaller than the Chandrasekhar Limit will not overcome electron degeneracy and end up as a white dwarf. Most of the outer layer of the star in question here will be blown away already. The core mass of this star will be only a fraction of its
, which is much smaller than the Chandrasekhar Limit.
As the star completes the triple alpha process, its core continues to get smaller. Eventually, atoms will get so close that electrons from two nearby atoms will almost run into each other. By Pauli Exclusion Principle, that's not going to happen. Electron degeneracy will exert a strong outward force on the core. It would balance the inward gravitational pull and prevent the star from collapsing any further. The star will not go any smaller. Still, it will gain in temperature and glow on the blue end of the spectrum. It will end up as a white dwarf.