Answer:
I need the columns to do the question
Explanation:
The element is Sodium with an atomic number of 11 and electrovalent bonding takes place when it comes near an atom having seven valence electrons.
<h3>What is Electrovalent bonding?</h3>
This is also referred to as ionic bonding and involves the transfer of atoms of an element to another.
In order for both of them to achieve a stable octet configuration, sodium donates one atom to the element seven valence electrons.
Read more about Electrovalent bonding here brainly.com/question/1979431
#SPJ1
Answer:- 0.273 kg
Solution:- A double replacement reaction takes place. The balanced equation is:

We have 0.29 L of 22% m/v aluminum nitrate solution. m/s stands for mass by volume. 22% m/v aluminium nitrate solution means 22 g of it are present in 100 mL solution. With this information, we can calculate the grams of aluminum nitrate present in 0.29 L.

= 63.8 g aluminum nitrate
From balanced equation, there is 1:3 mol ratio between aluminum nitrate and sodium chlorate. We will convert grams of aluminum nitrate to moles and then on multiplying it by mol ratio we get the moles of sodium chlorate that could further be converted to grams.
We need molar masses for the calculations, Molar mass of sodium chlorate is 106.44 gram per mole and molar mass of aluminum nitrate is 212.99 gram per mole.

= 
sodium chlorate solution is 35% m/m. This means 35 g of sodium chlorate are present in 100 g solution. From here, we can calculate the mass of the solution that will contain 95.7 g of sodium chlorate and then the grams are converted to kg.

= 0.273 kg
So, 0.273 kg of 35% m/m sodium chlorate solution are required.
The question is incomplete, here is the complete question:
Calculate the mole fraction of the ionic species KCl in the solution A solution was prepared by dissolving 43.0 g of KCl in 225 g of water.
<u>Answer:</u> The mole fraction of KCl in the solution is 0.044
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
.....(1)
Given mass of water = 225 g
Molar mass of water = 18 g/mol
Putting values in equation 1, we get:

Given mass of KCl = 43 g
Molar mass of KCl = 74.55 g/mol
Putting values in equation 1, we get:

Mole fraction of a substance is given by:

Moles of KCl = 0.577 moles
Total moles = [0.577 + 12.5] = 13.077 moles
Putting values in above equation, we get:

Hence, the mole fraction of KCl in the solution is 0.044