The answer is B.)
This is because for years scientists have build up and found discoveries that led to recent discoveries brought by previous scientists.
Hope this helps
Newton observed the action of a prism on the white light and on red light. Because he did not control the event, this investigation of light was an observational study.
Hope this helps! (:
Answer:
the moment of inertia of the merry go round is 38.04 kg.m²
Explanation:
We are given;
Initial angular velocity; ω_1 = 37 rpm
Final angular velocity; ω_2 = 19 rpm
mass of child; m = 15.5 kg
distance from the centre; r = 1.55 m
Now, let the moment of inertia of the merry go round be I.
Using the principle of conservation of angular momentum, we have;
I_1 = I_2
Thus,
Iω_1 = I'ω_2
where I' is the moment of inertia of the merry go round and child which is given as I' = mr²
Thus,
I x 37 = ( I + mr²)19
37I = ( I + (15.5 x 1.55²))19
37I = 19I + 684.7125
37I - 19 I = 684.7125
18I = 684.7125
I = 684.7125/18
I = 38.04 kg.m²
Thus, the moment of inertia of the merry go round is 38.04 kg.m²
Answer:
distance stop 1.52m,
velocity 4.0 m/s y^
Explanation:
The movement of the particle is two-dimensional since it has acceleration in the x and y axes, the way to solve it is by working each axis independently.
a) At the point where the particle begins to return its velocity must be zero (Vfx = 0)
Vfₓ = V₀ₓ + aₓ t
t = - V₀ₓ/aₓ
t = - 2.4/(-1.9)
t= 1.26 s
At this time the particle stops, let's find his position
X1 = V₀ₓ t + ½ aₓ t²
X1= 2.4 1.26 + ½ (-1.9) 1.26²
X1= 1.52 m
At this point the particle begins its return
b) The velocity has component x and y
As a section, the X axis x Vₓ = 0 m/s is stopped, but has a speed on the y axis
Vfy= Voy + ay t
Vfy= 0 + 3.2 1.26
Vfy = 4.0 m/s
the velocity is
V = (0 x^ + 4.0 y^) m/s
c) In order to make the graph we create a table of the position x and y for each time, let's start by writing the equations
X = V₀ₓ t+ ½ aₓ t²
Y = Voy t + ½ ay t²
X= 2.4 t + ½ (-1.9) t²
Y= 0 + ½ 3.2 t²
X= 2.4 t – 0.95 t²
Y= 1.6 t²
With these equations we build the table to graph, for clarity we are going to make two distance graph with time, one for the x axis and another for the y axis
Chart to graph
Time (s) x(m) y(m)
0 0 0
0.5 0.960 0.4
1 1.45 1.6
1.50 1.46 3.6
2.00 1.00 6.4
The bigger the starting force, the further the distance moved by the car?