Answer: 185.5672566
Explanation: The friction is not relevant
Normal reaction is the force perpendicular to the surface.
this force resists the downwards forces applied which are gravity and a component of the applied force.
Answer:
Explanation:
A )
At the bottom of the circle , the potential energy of the stopper is converted into kinetic energy
1/2 m V² = mg x 2r + 1/2 mv²
m is mass of stopper , V is velocity at the bottom , r is radius of the circular path which is length of the string , v is velocity at the top
1/2 V² = g x 2r + 1/2 v²
V² = g x 4r + v²
V² = 9.8 x 4 + 8²
V² = 103.2
V = 10.16 m/s
B )
If T be the tension at the top
Net downward force
= mg + T . This force provides centripetal force for the circular motion
mg +T = mv² / r
T = mv²/r -mg
= m ( v²/r - g )
= .005 ( 8²/1 -g )
= .005 x 54.2
= .27 N .
C ) At the bottom
Net force = T - mg , T is tension at the bottom , V is velocity at bottom
T-mg = mV²/r
T = m ( V²/r +g )
= .005 ( 10.16²/1 +9.8)
= .005 x 113
= .56 N .
The rate at which the height is changing is ( 5 / x ) m / hr
We know that,
Area of an equilateral triangle A =
/ 4
h =
x / 2
Where,
x = Side
h = Height
Given that,
dA / dt = 5
/ hr
h =
x / 2
Differentiate both sides with respect to t
dh / dt = (
/ 2 ) ( dx / dt )
dx / dt = ( 2 /
) ( dh / dt )
A =
/ 4
Differentiate both sides with respect to t
dA / dt = (
/ 4 ) ( 2x ) ( dx / dt )
5 = (
/ 4 ) ( 2x ) ( 2 /
) ( dh / dt )
dh / dt = ( 5 / x ) m / hr
Rate of change of height is defined as the rate at which height of an object changes with respect to time. It is represented as dh / dt
Therefore, the rate at which the height is changing is ( 5 / x ) m / hr
To know more about Rate of change of height
brainly.com/question/13283964
#SPJ4
<h3><u>Answer and explanation;</u></h3>
-Rate of reaction is the speed at which the reactants are converted to products.
-Rate of reactions depends on a number of factors which includes<u>;</u>
- <em><u>Concentration of reactants</u></em>;<u><em> increasing the concentration of reactants</em></u> increases the rate of reaction.
- <u><em>Temperature;</em></u><u><em> </em></u>An <u><em>increase in temperature results to an increased rate of reaction.</em></u> Increase in temperature increases the kinetic energy of molecules thus the collision per unit time also increases and hence the rate of reaction increases.
- <u><em>Decreasing the size of particles of solid reactants</em></u> also increases the rate of reaction. This is because smaller particles increases the surface area on which more collisions can occur thus a faster rate of reaction.
- <em>Adding a catalyst also increases the rate of reaction.</em> This is because catalysts lower the activation energy of reactants, minimum energy require by reactants for the reaction to take place. This thus increases the rate of reaction.
The answer, I believe, is, "B. When particles collide, no energy is lost."