1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanzania [10]
2 years ago
13

The photo shows a system that consists of a person on a diving board. What change could you make to the system that would decrea

se its total energy?
A. Replace the diver with someone who has more mass.

B. Decrease the height of the diving board.

C. Increase the length of the diving board.

D. Increase the height of the diving board.


*If you do not know the answer, then DON'T respond. I will report you. Also, explanations are appreciated but if not then that's fine.

Physics
2 answers:
Shalnov [3]2 years ago
8 0
Option B is the answer
Sliva [168]2 years ago
5 0

Answer:

B

Explanation:

If you decrease the height of the diving board, you will create less energy because you will build up less acceleration jumping from a lower height. Hope this helps ya!

You might be interested in
What is needed to set a body in motion
kumpel [21]

Answer:

Newtons law

Explanation:

According to this law, a body at rest tends to stay at rest, and a body in motion tends to stay in motion, unless acted on by a net external force.

3 0
3 years ago
Please help, I do not understand
Anettt [7]
I think the key here is to be exquisitely careful at all times, and
any time we make any move, keep our units with it.

We're given two angular speeds, and we need to solve for a time.

Outer (slower) planet:
Angular speed =  ω  rad/sec
Time per unit angle =  (1/ω)  sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/ω sec/rad) · (2π rad) = 2π/ω seconds .

Inner (faster) planet:
Angular speed =  2ω  rad/sec
Time per unit angle =  (1/2ω)  sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/2ω sec/rad) · (2π rad) = 2π/2ω sec = π/ω seconds.

So far so good.  We have the outer planet taking 2π/ω seconds for one
complete revolution, and the inner planet doing it in only π/ω seconds ...
half the time for double the angular speed.  Perfect !

At this point, I know what I'm thinking, but it's hard to explain.
I'm pretty sure that the planets are in line on the same side whenever the
total elapsed time is something like a common multiple of their periods.
What I mean is:

They're in line, SOMEwhere on the circles, when

     (a fraction of one orbit) = (the same fraction of the other orbit)    
AND
     the total elapsed time is a common multiple of their periods.

Wait !  Ignore all of that.  I'm doing a good job of confusing myself, and
probably you too.  It may be simpler than that.  (I hope so.)  Throw away
those last few paragraphs.

The planets are in line again as soon as the faster one has 'lapped'
the slower one ... gone around one more time.  
So, however many of the longer period have passed, ONE MORE
of the shorter period have passed.  We're just looking for the Least
Common Multiple of the two periods.

      K (2π/ω seconds)  =  (K+1) (π/ω seconds)

                     2Kπ/ω   =    Kπ/ω + π/ω

Subtract  Kπ/ω :    Kπ/ω = π/ω

Multiply by  ω/π :      K  =  1

(Now I have a feeling that I have just finished re-inventing the wheel.)

And there we have it:

     In the time it takes the slower planet to revolve once,
     the faster planet revolves twice, and catches up with it.
    
     It will be  2π/ω  seconds before the planets line up again.
    
     When they do, they are again in the same position as shown
     in the drawing.

To describe it another way . . . 

     When Kanye has completed its first revolution ...

     Bieber has made it halfway around.

     Bieber is crawling the rest of the way to the starting point while ...

     Kanye is doing another complete revolution.

     Kanye laps Bieber just as they both reach the starting point ...

     Bieber for the first time, Kanye for the second time.


You're welcome.  The generous bounty of 5 points is very gracious,
and is appreciated.  The warm cloudy water and green breadcrust
are also delicious.
5 0
3 years ago
Which shows the conversion of 2.09 × 10-4 meters to millimeters?
Ivenika [448]
I think its A I hope this help thank you!!
4 0
3 years ago
What is the process of conduction in terms of particle movement
ivann1987 [24]
<span>What is the process of conduction in terms of particle movement chocies

</span>
8 0
3 years ago
A liquid is used to make a mercury-type barometer. The barometer is intended for space-faring astronauts. At the surface of the
Anarel [89]

Answer:

Density of liquid = 4730 kg/m³

Atmospheric pressure on planet X = 8401.7 N/m²

Explanation:

Pressure, P = ρgh where ρ = density of liquid, g =9.8 m/s² and h = height of column at earth's surface = 2185 mm. Since P = atmospheric pressure, for mercury, P = ρ₁gh₁ where ρ₁ = 13.6 g/cm³ and h₁ = 760 mm

So, ρgh = ρ₁gh₁

ρ = ρ₁h₁/h = 13.6 g/cm³ × 760/2185 = 4.73 g/cm³ = 4730 kg/m³

The atmospheric pressure on planet X

P = ρg₁h₃     g₁ = g/4 and h₃ = 725 mm = 0.725 m

on planet X

P = ρg₁h₃ = (4730 kg/m³ × 9.8 m/s² × 0.725 m)/4 = 8401.7 N/m²

6 0
3 years ago
Other questions:
  • What is the meaning of Choreography for Aerobic Dance?
    12·1 answer
  • What is the net force when a pair of balanced forces acts on an object
    9·2 answers
  • What kind of image is formed by a plane mirror
    9·1 answer
  • Where do consumers get their nitrogen from?
    12·1 answer
  • Enlarged brain ventricles are presumed to signify __________. A. an excess of dopamine activity B. frontal lobe abnormalities C.
    12·2 answers
  • The free fall motion shown in the<br>image must be​
    10·1 answer
  • If 2 objects are moved by the same force (F):
    13·2 answers
  • How much power does an Ox pulling a plow 20 m cross a field, exerting 120J of work over a period of 15 s?​
    7·1 answer
  • Light travels in a straight line at a constant speed of 3.0 x 10 8 m/s for 4.1
    15·1 answer
  • How might being too strong actually restrict a joints range of motion
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!