Answer:
the real tricky one question
Explanation:
Answer:
1. 4FeCl3 + 3O2 → 2Fe2O3 + 6Cl2
2. 6 moles of Cl2
Explanation:
1. The balanced equation for the reaction. This is illustrated below:
4FeCl3 + 3O2 → 2Fe2O3 + 6Cl2
2. Determination of the number of mole of Cl2 produce when 4 moles of FeCl3 react with 4 moles. To obtain the number of mole of Cl2 produced, we must determine which reactant is the limiting reactant.
This is illustrated below:
From the balanced equation above,
4 moles of FeCl3 reacted with 3 moles of O2.
Since lesser amount of O2 (i.e 3 moles) than what was given (i.e 4 moles) is needed to react completely with 4 moles of FeCl3, therefore FeCl3 is the limiting reactant and O2 is the excess reactant.
Finally, we can obtain the number of mole Cl2 produced from the reaction as follow:
Note: the limiting reactant is used as it will produce the maximum yield of the reaction since all of it is used up in the reaction.
From the balanced equation above,
4 moles of FeCl3 will react to produced 6 moles of Cl2.
BaO, Barium Oxide.
Na2SO4, Sodium Sulfate.
CuO, Copper (II) Oxide.
P2O5, Diphosphorus Pentoxide.
HNO3, Nitric Acid.
CO32-, Molecular Formula.
Hope this helps. :)
Answer:
see below
Explanation:
for A + 2B => Products ...
Rate Law => Rate =k[A][B]ˣ
As shown in expression, A & B are included, C is not.
Answer:
1.1 liters
1.2 liters
1.5 liters
Explanation:
Precision in data refers to how close the experimental values of an experiment are to one another irrespective of the true or accepted value. In other words, a set of values are said to be PRECISE if they are close to one another.
In this case, data was collected after conducting an experiment about the amount, in liters, of water a specific plant needs per month. However, according to the set of experimental values provided, only 1.1 litres, 1.2litres and 1.5litres are close to one another and, hence, are said to be PRECISE even if they are not close to the accepted value of 6litres.