1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenaWriter [7]
2 years ago
7

The work done by the brakes during braking is equal to

Physics
1 answer:
kow [346]2 years ago
6 0

Answer:

The amount of pressure delivered to them

Explanation:

You might be interested in
The greater the mass is in an object, the higher resistance to a change in movement the object will have. Please select the best
Fofino [41]
This statement is true. The greater the mass is in an object, it is indeed the higher resistance to a change in movement the object will have. That only mean that the mass of an object and its resistance to change of movement is directly proportional.
3 0
3 years ago
A thin double convex glass lens with an index of 1.56 while surrounded by air has a 10 cm focal length. If it is placed under wa
bearhunter [10]

Explanation:

Formula which holds true for a leans with radii R_{1} and R_{2} and index refraction n is given as follows.

          \frac{1}{f} = (n - 1) [\frac{1}{R_{1}} - \frac{1}{R_{2}}]

Since, the lens is immersed in liquid with index of refraction n_{1}. Therefore, focal length obeys the following.  

            \frac{1}{f_{1}} = \frac{n - n_{1}}{n_{1}} [\frac{1}{R_{1}} - \frac{1}{R_{2}}]  

             \frac{1}{f(n - 1)} = [\frac{1}{R_{1}} - \frac{1}{R_{2}}]

and,       \frac{n_{1}}{f(n - n_{1})} = \frac{1}{R_{1}} - \frac{1}{R_{2}}

or,          f_{1} = \frac{fn_{1}(n - 1)}{(n - n_{1})}

              f_{w} = \frac{10 \times 1.33 \times (1.56 - 1)}{(1.56 - 1.33)}

                          = 32.4 cm

Using thin lens equation, we will find the focal length as follows.

             \frac{1}{f} = \frac{1}{s_{o}} + \frac{1}{s_{i}}

Hence, image distance can be calculated as follows.

       \frac{1}{s_{i}} = \frac{1}{f} - \frac{1}{s_{o}} = \frac{s_{o} - f}{fs_{o}}

              s_{i} = \frac{fs_{o}}{s_{o} - f}

             s_{i} = \frac{32.4 \times 100}{100 - 32.4}

                       = 47.9 cm

Therefore, we can conclude that the focal length of the lens in water is 47.9 cm.

4 0
3 years ago
A speaker vibrates at a frequency of 200 hz what is its period
Norma-Jean [14]

Period = (1) / (frequency)

Period = (1) / (200 per second)  =  0.005 second  =  5 milliseconds

5 0
3 years ago
Read 2 more answers
What is an example of potential energy to kinetic energy?
olga_2 [115]

Potential energy is the store she energy from an object this could include rubber bands. Kinetic energy is the energy that deals with motion a good example is a person running

6 0
3 years ago
Read 2 more answers
You toss a rock up vertically at an initial speed of 39 feet per second and release it at an initial height of 6 feet. The rock
3241004551 [841]

Answer:

2.583 s, 29.77 ft and 1.219 s

Explanation:

Using equation of motion and taken the motion upward as positive, also a = g ( acceleration due to gravity) = - 32 fts⁻², V= 39 fts⁻¹ V₁ is final velocity, y is the distance in ft from the ground

H = 6 ft, the height from which it is tossed

V₁ = V + gt = V - gt

at maximum height the body came to rest momentarily V₁ = 0

0 = V - gt

-V = -gt

- 39 / -32 = t

t time to reach maximum height = 1.219 s

To Maximum height reached can be calculated with the formula

V₁² = V² + 2g( y - H) where H is the initial height reached by the tossed rock

where V₁ is the final velocity at maximum height which = 0

0 = V² - 2g(y-H) where y is the distance traveled from the ground

-V² = -2g(y-H)

₋V² / -2g = y-H

(V²/2g) + H = y in ft

(39² / (2 × 32)) + 6

y = 29.77 ft

The total time it will be in air can be calculated with the formula below

y = H + Vt - 0.5gt² from y-H = ut + 0.5at²

0.5gt² - Vt - H = 0 since the body returned to the ground ( y = 0)

0.5gt² - Vt - H = 0

using quadratic formula

- (-V)² ± √ ((-V²) - 4 × 0.5g × -H) / (2 × 0.5 × g)

(V ± √ (V² + 2gH)) ÷ g

substitute the values into the expression

t = (39 + √(39² + (2×-32× 6)))/ 32 or (39 - √ (39² + (2 × -32×6))/ 32

t = (39 + √(1521 +384))/32 = (39 + √1905) / 32  = 2.583 s

t = (39 - √1905) / 32 =  -0.15 s

The will remain in air (V ± √ (V² + 2gH)) / g seconds. It will reach a maximum height of (V²/2g) + H feet after V/g seconds

8 0
3 years ago
Other questions:
  • PLZ ANSWER ASAP
    13·1 answer
  • How hot is the sun? First answer gets brainliest. :)
    10·2 answers
  • If the number of particles is increased in a balloon what happens to the pressure inside of it?
    7·1 answer
  • a bottle lying on the windowsill falls off and takes 4.95 seconds to reach the ground. the distance from the windowsill to the g
    10·2 answers
  • Does the horizontal motion of the projectile depend on the vertical motion?
    10·2 answers
  • Two particles execute simple harmonic motion of the same amplitude and frequency along close parallel lines. They pass each othe
    5·1 answer
  • What is the most fundamental property of a star in determining its evolution? luminosity temperature composition mass size?
    5·1 answer
  • Food that is cooked properly can no longer be contained. True or false
    15·1 answer
  • Which event demonstrates electromagnetic waves transferring energy?
    8·2 answers
  • Drag each tile to the correct box a chemical reaction takes place in which energy is released arrange the reactions characterist
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!