1) mass composition
N: 30.45%
O: 69.55%
-----------
100.00%
2) molar composition
Divide each element by its atomic mass
N: 30.45 / 14.00 = 2.175 mol
O: 69.55 / 16.00 = 4.346875
4) Find the smallest molar proportion
Divide both by the smaller number
N: 2.175 / 2.175 = 1
O: 4.346875 / 2.175 = 1.999 = 2
5) Empirical formula: NO2
6) mass of the empirical formula
14.00 + 2 * 16.00 = 46.00 g
7) Find the number of moles of the gas using the equation pV = nRT
=> n = pV / RT = (775/760) atm * 0.389 l / (0.0821 atm*l /K*mol * 273.15K)
=> n = 0.01769 moles
8) Find molar mass
molar mass = mass in grams / number of moles = 1.63 g / 0.01769 mol = 92.14 g / mol
9) Find how many times the mass of the empirical formula is contained in the molar mass
92.14 / 46.00 = 2.00
10) Multiply the subscripts of the empirical formula by the number found in the previous step
=> N2O4
Answer: N2O4
Answer:
79.04 L
Explanation:
We are given;
Initial Volume; V1 = 6.24L
Initial Pressure; P1 = 760 mm Hg
Final pressure; P2 = 60.0mm Hg
To solve for final volume, we will use Boyles law;
P1•V1 = P2•V2
Let's make V2 which is the final volume the subject;
V2 = (P1•V1)/P2
V2 = (760 × 6.24)/60
V2 = 79.04 L
Answer: Option (d) is the correct answer.
Explanation:
The amount of salt present or dissolved in water or water body is known as salinity.
When salinity increases then number of particles increases, therefore, density will increase. Also, number of ions will decrease thus, electrical conductivity will decrease.
On the other hand, increase in salinity will increase the amount of salt (NaCl) is the water.
Thus, we can conclude that out of the given options, the option all of the above is true.
The 28 is the sum of the protons and neutrons in the element silicon.
ALL silicon atoms have 14 protons in the nucleus, so we can turn this into an equation:
#protons + #neutrons = 28
14 + #neutrons = 28
#neutrons = 14
#protons = 14
<span>293 grams
The formula for the wavelength of a massive particle is
λ = h/p
where
λ = wavelength
h = Plank constant (6.626070040Ă—10^â’34 J*s)
p = momentum (mass times velocity)
So let's solve for momentum and from there get the mass
λ = h/p
λp = h
p = h/λ
Substitute known values and solve
p = 6.626070040Ă—10^â’34 J*s/3.45Ă—10^-34 m
p = 1.92 J*s/m
Since momentum is the product of mass and velocity, we have
p = M * V
p/V = M
So substitute again, and solve.
p/V = M
1.92 J*s/m / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
0.293 kg = M
So the mass is 293 grams</span>