The answer would be
C. Rods and Cones
Answer:
The forms of energy involved are
1. Kinetic energy
2. Potential energy
Explanation:
The system consists of a ball initially at rest. The ball is pulled down from its equilibrium position (this builds up its potential energy) and then released. The released ball oscillates due to a continuous transition between kinetic and potential energy.
Answer:
Radio waves have a wavelength between
and 
While,
X rays have a wavelength between 1m and 10km.
=> It is one of the condition of diffraction that the obstacle (coming in the way) must be comparable with the size of the wavelength.
=> This shows, that radio waves have a wavelength which is comparable with the size of buildings and can really easily diffract through it
=> While, X-rays are big enough to diffract through the wall.
So, if an X-ray technician stands behind a wall during the use of her machine, she will remain safe.
Answer:
Explanation:
Speed and medium are properties of a wave which is in common within an area of the spectrum of visible light. i.e;
Their medium of propagation
They both travel at the same speed ( speed of light )
The properties mentioned above are properties that define that wave is found within an area spectrum for visible light.
Wish I Could Help You!
Answer:
A concave mirror has a radius of curvature of 20 cm. What is it's focal length? If an object is placed 15 cm in front of it, where would the image be formed? What is it's magnification?
The focal length is of 10 cm, object distance is 30 cm and magnification is -2.
Explanation:
Given:
A concave mirror:
Radius of curvature of the mirror, as C = 20 cm
Object distance in-front of the mirror = 15 cm
a.
Focal length:
Focal length is half of the radius of curvature.
Focal length of the mirror =
= 10 cm
According to the sign convention we will put the mirror on (0,0) point, of the Cartesian coordinate open towards the negative x-axis.
Object and the focal length are also on the negative x-axis where focal length and image distance will be negative numerically.
b.
We have to find the object distance:
Formula to be use:
⇒ 
⇒ Plugging the values.
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Image will be formed towards negative x-axis 30 cm away from the pole.
c.
Magnification (m) is the negative ratio of mage distance and object distance:
⇒ 
⇒ 
⇒ 
The focal length of the concave mirror, is of 10 cm, object distance is 30 cm and magnification is -2.