Answer:
v = 12.12 m/s
Explanation:
It is given that,
Radius of circle, r = 30 m
The coefficient friction between tires and road is 0.5,
The centripetal force is balanced by the force of friction such that,
v = 12.12 m/s
So, the maximum speed with which this car can round this curve is 12.12 m/s. Hence, this is the required solution.
Scott needs to determine the density of a metallic rod. First, he should determine the mass of his sample on the laboratory balance. Second, he should measure the volume of his sample by water displacement. Finally, he can calculate the density by dividing mass/volume.
Hope this helped ;)

With the given values of
, we have

Try dealing with the powers of 10 first: On the right, we have

Meanwhile, the other values on the right reduce to

Then taking units into account, we end up with the equation

Now we solve for
:


or, if taking significant digits into account,

As the surface given is a smooth surface, we can use specular reflection. According to the law of specular reflection, the angle of incidence equals the angle of reflection, so it will also be 40°. Answer is A.