Answer:
Explanation:
complete combustion reaction of ethane is given by the reaction
2C2H6+7O2..............4CO2+6H2O
no of moles in 34 grams of O2=34/32=1.063
7mole of O2 produced 6 moles of H2O
therefore 1.063 moles of O2 produced=1.063*6/7=0.9 moles
now 0.9 moles of H2O contain how much grams=0.9*18=16.2 grams
Answer:
carbon with graphite as the allotrope
<h3>
Answer: D) all of the above</h3>
Explanation:
The lungs pump oxygen in and carbon dioxide out, which goes through the blood stream to help with the cell's energy needs.
Nutrients pass through the blood stream as well. The nutrients start with the digestive system (mouth, esophagus, stomach, small intestine) before going into the blood stream. The nutrients are building blocks to help make new cells when old ones die off.
When those cells die off, the body sheds them like dead skin, but internal dead cells are passed off as waste. This waste and other byproducts the body doesn't need passes through the blood stream as well.
In short, the blood stream is basically the highway to help get desired materials (eg: oxygen and nutrients) and get rid of waste (eg: carbon dioxide and other unwanted byproducts or dead cell material)
So that's why the answer includes A, B and C.
This problem is providing information about the initial mass of mercury (II) oxide (10.00 g) which is able to produce liquid mercury (8.00 g) and gaseous oxygen and asks for the resulting mass of the latter, which turns out to be 0.65 g after doing the corresponding calculations.
Initially, it is given a mass of 10.00 g of the oxide and 1.35 g are left which means that the following mass is consumed:

Now, since 8.00 grams of liquid mercury are collected, it is possible to calculate the grams of oxygen that were produced, by considering the law of conservation of mass, which states that the mass of the products equal that of the reactants as it is nor destroyed nor created. In such a way, the mass of oxygen turns out to be:

Learn more: