1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina-Kira [14]
2 years ago
11

A rigid, nonconducting tank with a volume of 4 m3 is divided into two unequal parts by a thin membrane. One side of the membrane

, representing 1/3 of the tank, contains nitrogen gas at 6 bar and 100oC, and the other side, representing 2/3 of the tank, is evacuated. The membrane is ruptured and the gas fills the tank. (a) What is the final temperature of the gas? How much work is done? Is the process reversible? (b) How much work is done if the gas is returned to its original state by a reversible process? Assume nitrogen ideal gas for which Cp = (7/2) R and Cv = (5/2)R.​
Physics
2 answers:
Tom [10]2 years ago
8 0

The system's final temperature will be 373K, which is the same as its starting temperature. The system exerts 409.8R Joules of work.

We need to understand the thermodynamic processes in order to locate the solution.

<h3>How can I determine the gas's final temperature?</h3>
  • Thermodynamic processes are any actions that result in modifications to a system's thermodynamic coordinates.
  • Given that the tank is stiff and non-conducting, the answer to the question is that dQ=0.
  • Without using any external force, the membrane is torn; hence, dW=0.
  • The first law of thermodynamics is expressed as follows:

                    dU=dQ-dW     , It is 0 here.

  • As we are aware,

                  dU=C_pdT=0\\dT=0\\T=constant\\T_1=T_2=373K

As a result, the system's final temperature will be equal to its starting temperature.

<h3>How much work is expended?</h3>
  • The process is isothermal, as we discovered.
  • As a result, the work will be,

                  W=RT ln(\frac{V_2}{V_1} )=373R*ln(3 )\\W=409.8R Joules

R is the gaseous universal constant.

<h3>A reversible process is what?</h3>
  • Reversible processes are any operations that have the ability to be reversed.
  • The system goes through the exact same states as it did during the direct procedure throughout this time.

Thus, we can draw the conclusion that the system's end temperature will be 373K, the same as its starting temperature. The system exerts 409.8R Joules of work.

Learn more about the thermodynamic processes here:

brainly.com/question/28067625

#SPJ1

kondor19780726 [428]2 years ago
7 0

The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.

To find the answer, we need to know about the thermodynamic processes.

<h3>How to find the final temperature of the gas?</h3>
  • Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
  • In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
  • The membrane is raptured without applying any external force, thus, dW=0.
  • We have the first law of thermodynamic expression as,

                                dU=dQ-dW

  • Here it is zero.

                                  dU=0,

  • As we know that,

                             dU=C_pdT=0\\\\thus,  dT=0\\\\or , T=constant\\\\i.e, T_1=T_2

  • Thus, the final temperature of the system will be equal to the initial temperature,

                          T_1=T_2=100^0C=373K

<h3>How much work is done?</h3>
  • We found that the process is isothermal,
  • Thus, the work done will be,

                               W=RT*ln(\frac{V_2}{V_1} )=373R*ln(\frac{4}{\frac{4}{3} })\\ \\W=409.8R J

Where, R is the universal gas constant.

<h3>What is a reversible process?</h3>
  • Any process which can be made to proceed in the reverse direction is called reversible process.
  • During which, the system passes through exactly the same states as in the direct process.

Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.

Learn more about thermodynamic processes here:

brainly.com/question/28067625

#SPJ1

You might be interested in
What are possible units for impulse? Check all that apply. kg • m kg • N • s N • m
Vlada [557]

We know that impulse is simply the product of Force and time:

Impulse = Force * time

 

Since Force has a unit of Newton or kg m/s^2 and time is in seconds, therefore impulse can have units as:

N s

or

<span>kg m/s</span>

4 0
3 years ago
At a certain location, Earth has a magnetic field of 0.60 ✕ 10−4 T, pointing 75° below the horizontal in a north-south plane. A
saveliy_v [14]

Answer with Explanation:

We are given that

Magnetic field,B=0.6\times 10^{-4} T

\theta=75^{\circ}

Length of wire,l=15 m

Current,I=19 A

a.We have to find the magnitude of magnetic force and direction of magnetic force.

Magnetic force,F=IBlsin\theta

Using the formula

F=0.6\times 10^{-4}\times 15\times 19sin75

F=16.5\times 10^{-3} N

Direction=tan\theta=cot(90-75)=tan15^{\circ}

\theta=15^{\circ}

15 degree above the horizontal  in the northward direction.

5 0
3 years ago
Why a body in uniform velocity is zero acceleration ?​
seropon [69]
Uniform velocity means no Net force and therefore no acceleration. Acceleration only happens when the velocity changes.
4 0
4 years ago
Can someone pleassssssssssse answer this
siniylev [52]
As the plane falls the parabolic path remains directly below as the plane continues to fly over. This give more of an overview. When the package falls vertical acceleration happens as there is a vertical velocity as the package falls form high above. The downwards motion of gravity acts on the package if the approximated projectile motion ignoring air resistance.
6 0
3 years ago
Saturn has an orbital period of 29.46 years. In two or more complete sentences, explain how to calculate the average distance fr
bixtya [17]
For astronomical objects, the time period can be calculated using:
T² = (4π²a³)/GM
where T is time in Earth years, a is distance in Astronomical units, M is solar mass (1 for the sun)
Thus,
T² = a³
a = ∛(29.46²)
a = 0.67 AU
1 AU = 1.496 × 10⁸ Km
0.67 * 1.496 × 10⁸ Km
= 1.43 × 10⁹ Km
8 0
3 years ago
Other questions:
  • A wave has a period of 2 seconds and a wavelength of 4 meters.Calculate its frequency and speed.
    10·2 answers
  • For a car rounding a curve, what force provides the circular motion
    8·1 answer
  • Suppose that there are N=108 two-state systems, each with energy difference E=6 × 10-21 J between the two states. The environmen
    12·1 answer
  • 19 point please please answer right need help
    6·1 answer
  • С какой скоростью велосипедист проходит закругление велотрека радиусом 25 м, если центростремительное ускорение при этом 4 м/с2?
    7·1 answer
  • a fan is rotating clockwise and its acceleration has a positive sign. is the angular velocity of the fan speeding up, slowing do
    12·1 answer
  • Which diagram best shows the field lines around two bar magnets that repel each other?
    9·1 answer
  • a An object is tarown up with a velocity v = 6.02 +7.0j. Calculate the (1) time taken reach the maximum height (ii) the horizont
    7·2 answers
  • In the same year, the average finishing time for U.S. women was 4 hours and 41 minutes. What was the average female speed in mil
    11·1 answer
  • At the very end of 500 DAYS OF SUMMER, Tom (Joseph Gordon-Levitt) is so heartbroken by
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!