English please i cant understand
Answer: 64.6 mmHg
Explanation:
Given that:
Volume of gas V = 3.47L
(since 1 liter = 1dm3
3.47L = 3.47dm3)
Temperature T = 85.0°C
Convert Celsius to Kelvin
(85.0°C + 273 = 358K)
Pressure P = ?
Number of moles of gas N = 0.100 mole
Note that Molar gas constant R is a constant with a value of 0.0082 ATM dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
p x 3.47dm3 = 0.10 x (0.0082 atm dm3 K-1 mol-1 x 358K)
p x 3.47dm3 = 0.29 atm dm3
p = (0.29 atm dm3 / 3.47 dm3)
p = 0.085 atm
Recall that pressure of the gas is required in mm hg, so convert 0.085 atm to mm Hg
If 1 atm = 760 mm Hg
0.085atm = 0.085 x 760
= 64.6 mm Hg
Thus, the pressure of the gas is 64.6 mm hg
Answer:
Chelate, any of a class of coordination or complex compounds consisting of a central metal atom attached to a large molecule, called a ligand, in a cyclic or ring structure. An example of a chelate ring occurs in the ethylenediamine-cadmium complex:
The ethylenediamine ligand has two points of attachment to the cadmium ion, thus forming a ring; it is known as a didentate ligand. (Three ethylenediamine ligands can attach to the Cd2+ ion, each one forming a ring as depicted above.) Ligands that can attach to the same metal ion at two or more points are known as polydentate ligands. All polydentate ligands are chelating agents.
Chelates are more stable than nonchelated compounds of comparable composition, and the more extensive the chelation—that is, the larger the number of ring closures to a metal atom—the more stable the compound. This phenomenon is called the chelate effect; it is generally attributed to an increase in the thermodynamic quantity called entropy that accompanies chelation. The stability of a chelate is also related to the number of atoms in the chelate ring. In general, chelates containing five- or six-membered rings are more stable than chelates with four-, seven-, or eight-membered rings.
Explanation:
Answer: Potential energy is converted to kinetic energy and back again.
Explanation:At points 1 and 3, the pendulum stops moving, and its mechanical energy is purely potential. At point 2, the pendulum is moving the fastest, and its mechanical energy is purely kinetic. Therefore, as the pendulum moves from point 1 to point 3, its potential energy is first converted to kinetic energy, then back to potential.
Answer:
1st Blank: <em>1 Co</em>
2nd Blank:<em> 2 Na2S</em>
3rd Blank:<em> 4 Na</em>
4th Blank:<em> 1 CoS2</em>
Explanation:
<em>Trust me</em>