Answer:
0.015 moles
Explanation:
- One mole of a compound contains molecules equivalent to the Avogadro's constant, 6.022 × 10^23.
- That is, 1 mole of a compound will have 6.022 × 10^23 molecules.
In our case, We are given 8.96 x 10^21 molecules of KBr
We need to find the number of moles in 8.96 x 10^21 molecules
1 mole of KBr = 6.022 × 10^23 molecules.
8.96 x 10^21 molecules = ?
Therefore;
(1 × 8.96 x 10^21 molecules ) ÷ 6.022 × 10^23 molecules.
= 1.488 × 10^-2 moles
= 0.01488 moles
= 0.015 moles
First, we write the reaction equation:
2KI + PbNO₃ → K₂NO₃ + PbI₂
The molar ratio of KI to PbNO₃ is 2 : 1
Moles of PbNO₃ present:
Moles = concentration (M) x volume (dm³)
= 0.194 x 0.195
= 0.038
Moles of KI required = 2 x 0.038 = 0.076 moles
concentration = moles / volume
volume = moles / concentration
= 0.076 / 0.2
= 0.38 L = 380 ml
The answer to this question is bohr Greek
Answer:
v = 2,66x10⁻⁵ P[H₂C₂O₄]
Explanation:
For the reaction:
H₂C₂O₄(g) → CO₂(g) + HCOOH(g)
At t = 0, the initial pressure is just of H₂C₂O₄(g). At t= 20000 s, pressures will be:
H₂C₂O₄(g) = P₀ - x
CO₂(g) = x
HCOOH(g) = x
P at t=20000 is:
P₀ - x + x + x = P₀+x. That means P at t=20000s - P₀ = x
For 1st point:
x = 92,8-65,8 = 27
Pressure of H₂C₂O₄(g) at t=20000s: 65,8-27 = 38,8
2nd point:
x = 130-92,1 = 37,9
H₂C₂O₄(g): 92,1 - 37,9 = 54,2
3rd point:
x = 157-111 = 46
H₂C₂O₄(g): 111-46 = 65
Now, as the rate law is :
v = k P[H₂C₂O₄]
Based on integrated rate law, k is:
(- ln P[H₂C₂O₄] + ln P[H₂C₂O₄]₀) / t = k
1st point:
k = 2,64x10⁻⁵
2nd point:
k = 2,65x10⁻⁵
3rd point:
k = 2,68x10⁻⁵
The averrage of this values is:
k = 2,66x10⁻⁵
That means law is:
v = 2,66x10⁻⁵ P[H₂C₂O₄]
I hope it helps!
Answer:
Group 1 or akali metals have the greatest metallic property.
Group 17 has the lowest metallic character.
C. As you move from right to lefton the periodic table, metallic character increases which is the ability to lose electrons. Ionization energy decrease as we move from right to left on the periodic table.
Explanation:
Akali metals in group 1 have the greatest metallic property and they are the most reactive metals. Francium metal on the group has the most metallic characteristics. It is rare and very radioactive. Group 17 has the lowest metallic character. This is because while moving across the period, the number of electrons in the outermost shell increases. This make it difficult for atoms to leave see electrons and become electropositive . Group 17 has the highest tendency of accepting electrons.
Ionization energy is the energy use to remove electron from an atom in gaseous stage. Ionization energy decrease as we move from right to left on the periodic table and metallic character increases as we move from right to left on the periodic table.