From the equation above the reacting ratio of KClO3 to O2 is 2:3 therefore the number of moles of oxygen produced is ( 4 x3)/2 = 6 moles since four moles of KClO3 was consumed
mass=relative formula mass x number of moles
That is 32g/mol x 6 moles =192grams
It's lone a little distinction (103 degrees versus 104 degrees in water), and I trust the standard rationalization is that since F is more electronegative than H, the electrons in the O-F bond invest more energy far from the O (and near the F) than the electrons in the O-H bond. That moves the powerful focal point of the unpleasant constrain between the bonding sets far from the O, and thus far from each other. So the shock between the bonding sets is marginally less, while the repugnance between the solitary matches on the O is the same - the outcome is the edge between the bonds is somewhat less.
Answer:
Your answer is Gravity,
The Earth's gravity pulls things at a rate of 9.8m/s² (varying depending upon one's distance). according to Newton, "all mass in the universe exerts some gravitational force". you are pulling on Sagitarios A* (the black hole at the center of the milky way galaxy) right now, and it is also pulling on you.
If you have any questions I <em><u>insist</u></em> that you ask in the comments.
<em>Wbob1314</em>
<u>Answer:</u> The molality of solution is 0.740 m.
<u>Explanation:</u>
To calculate the mass of solvent (water), we use the equation:

Volume of water = 750 mL
Density of water = 1 g/mL
Putting values in above equation, we get:

To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute
= 100.0 g
= Molar mass of solute
= 180 g/mol
= Mass of solvent (water) = 750 g
Putting values in above equation, we get:

Hence, the molality of solution is 0.740 m.
C.) both secrete toxins and have thorns (It simply depends on what kind of plant it is)