Answer:
d = 1.55 * 10⁻⁶ m
Explanation:
To calculate the distance between the adjacent grooves of the CD, use the formula,
..........(1)
The fringe number, m = 1 since it is a first order maximum
The wavelength of the green laser pointer,
= 532 nm = 532 * 10⁻⁹ m
Distance between the central maximum and the first order maximum = 1.1 m
Distance between the screen and the CD = 3 m
= Angle between the incident light and the diffracted light
From the setup shown in the attachment, it is a right angled triangle in which


Putting all appropriate values into equation (1)

I think it should be D as momentum is the product of mass and velocity...
Answer:
n1 sin θ1 = n2 sin θ2 Snell's Law (θ1 is the angle of incidence)
sin θ2 = n1 / n2 * sin θ1
sin θ2 = 2.4 / 1.33 * sin θ1
sin θ2 = 1.80 * .407 = .734
θ2 = 47.2 deg
The pertinent equation here is F=ma. You haven't shared the mass of the box, so I will use M to represent that mass.
Then F = M(<span>2.3 m/s^2) (answer)</span>
Hello! I can help you with this!
4. For this problem, we have to write and solve a proportion. We would set this proportion up as 12/15 = 8/x. This is because we're looking for the length of the shadow and we know the height of the items, so we line them up horizontally and x goes with 8, because we're looking for the shadow length. Let's cross multiply the values. 15 * 8 = 120. 12 * x = 12. You get 120 = 12x. Now, we must divide each side by 12 to isolate the "x". 120/12 is 10. x = 10. There. The cardboard box casts a shadow that is 10 ft long.
5. For this question, you do the same thing. This time, you're finding the height of the tower, so you would do 1.2/0.6 = x/7. Cross multiply the values in order to get 8.4 = 0.6x. Now, divide each side by 0.6x to isolate the "x". 8.4/0.6 is 14. x = 14. There. The tower is 14 m tall.
If you need more help on proportions and using proportions in real life situations, feel free to search on the internet to find more information about how you solve them.