<u>Answer:</u>
<h3>During wet and freezing temperatures, ice is able to form at a faster pace on bridges because freezing winds blow from above and below and both sides of the bridge, causing heat to quickly escape. The road freezes slower because it is merely losing heat through its surface.</h3>
<u>Sources:</u>
-- https://intblog.onspot.com/en-us/why-do-bridges-become-icy-before-roads
and
-- https://www.accuweather.com/en/accuweather-ready/why-bridges-freeze-before-roads/687262
I hope this helps you! ^^
Answer:
8.00 kJ
Explanation:
The first thing is to determine what quantities are there.
the mass of water = 1 000 kg
initial velocity, u = 6 m/s
final velocity, v = 4 m/s
the generator is operating at 100 % efficiency, so there is no energy loss.
The kinetic energy, Ek is converted to electrical energy, therefore Ek = electrical energy.
The kinetic energy is calculated as follows:
Ek = 1/2 mv²
= 1/2×(1 000)× (4)²
= 8 000 J/s
= 8.00 kJ Ans
As the scattering angle of the photon increases, the wavelength associated with the photon increases.
<h3><u>
Explanation:</u></h3>
The particle with quantum mechanical property is known as Compton wavelength. The wavelength of a photon increases during collision. When the scattering angle of the photon is 0 degree then the photon's wavelength increases by 0 and when the scattering angle is 180 degree then the wavelength of the photon will become double. This is known as Compton wavelength.
When a photon undergoes collision process, the photo loses its energy and this energy is transferred to the electrons. This causes energy of the photon to decrease and thus the frequency also decreases. Thus, the wavelength of the photon will increase.
If the potential energy of the three-object system is to be a maximum (closest to zero), should object 3 be placed closer to object 1, closer to object 2, or halfway between them?
If the potential energy of the three-object system is to be a maximum (closest to zero), should object 3 be placed closer to object 1, closer to object 2, or halfway between them?
Object 3 should be placed closer to object 1.
Object 3 should be placed on a halfway between object 2 and object 1.
Object 3 should be placed closer to object 2.
Solution
I think that Object 3 should be placed closer to object 2.
The electric field between the plates is equal to the potential difference across the plates divided by the separation of the plates.
The potential difference across the plates is equal to the charge stored divided by the capacitance.