Answer:
a. single replacement
Explanation:
Chemical equation:
Cd + H₂SO₄ → CdSO₄ + H₂
In given reaction Cd replace the hydrogen and form cadmium sulfate and hydrogen gas.
Single replacement:
It is the reaction in which one elements replace the other element in compound.
AB + C → AC + B
Other options are incorrect because,
Combustion:
In combustion reaction substances are burn in the presence of oxygen and form carbon dioxide and water.
Synthesis reaction:
It is the reaction in which two or more simple substance react to give one or more complex product.
A + B → AB
Double replacement:
It is the reaction in which two compound exchange their ions and form new compounds.
AB + CD → AC +BD
The molar mass of this gas is 92.3 g/mol
Calculation
By use ideal gas equation PV =nRT where
n=mole p=pressure V= volume R = gas constant T= temperature
n = mass /molar mass(MM)
substitute in the equation
PV =(mass/MM)RT
mass = density x volume(V)
Therefore PV =(density xV/ MM) xRT
divide both side by by V
P= (density/Mm) xRT
making MM the subject of the formula
MM = densityPRT
At STP = P= 1 atm, R= 0.0821 L.atm/Mol.k T = 273 K
MM is therefore = 4.12 g/l x 1 atm x 0.081 L.atm/mol.k x 273 K = 92.3 g/mol
Answer:
<h3><em>to Separate camphor from sand we use <u>sublimation</u> process.</em></h3><h3 /><h3 /><h3><em>Hope </em><em>it</em><em> </em><em>is </em><em>helpful</em><em> to</em><em> you</em><em> </em></h3>
Answer:
the answer is A
Explanation:
I dont really have an explanation but hope it helps
Answer:
0.9612 g
Explanation:
First we <u>calculate how many moles are there in 3.00 g of CCl₃F</u>, using its <em>molar mass</em>:
- 3.00 g CCl₃F ÷ 137.37 g/mol = 0.0218 mol CCl₃F
Now, we need to calculate how many grams of N₂O would have that same number of molecules, or in other words, <em>the same amount of moles</em>.
Thus we <u>calculate how many grams would 0.0218 moles of N₂O weigh</u>, using the <em>molar mass of N₂O</em> :
- 0.0218 mol N₂O * 44.013 g/mol = 0.9612 g N₂O