Answer:
A hot air balloon uses a burner to heat up the air inside the balloon. The burner is usually fueled by liquid propane. The burner mixes the fuel with air and ignites the mixture, which creates a flame directly underneath the bottom opening of the hot air balloon. Once the air inside the balloon begins to get warm, the balloon will rise. The pilot controls the balloon’s altitude by releasing hot air from a vent at the top of the balloon, releasing the warmer air causes the balloon to descend.
Explanation:
well according to what i know....headlights only let you see about 350 feet ahead...hope it helps :)
Answer:
D) The equilibrium lies far to the left
Explanation:
According to the law of mass action, the equilibrium constant K for the reaction at 373K can be calculated as follows:
K =
= 2.19×10^{-10}
([X] means = concentration of X)
This means that in the equilibrium the concentration of the reactant (that is in the denominator) will be much higher (around 10^{10} fold) than the concentrations of the products (that are in the numerator), and this means that the equilibrium lies far to the left (to the reactants side) as very small amount of product is being formed.
Your answer is: C. Neutrons are inside the nucleus of a atom
Mass of methanol (CH3OH) = 1.922 g
Change in Temperature (t) = 4.20°C
Heat capacity of the bomb plus water = 10.4 KJ/oC
The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change.
Let’s assume that no heat is lost to the surroundings. First, let’s calculate the heat changes in the calorimeter. This is calculated using the formula shown below:
qcal = Ccalt
Where, qcal = heat of reaction
Ccal = heat capacity of calorimeter
t = change in temperature of the sample
Now, let’s calculate qcal:
qcal = (10.4 kJ/°C)(4.20°C)
= 43.68 kJ
Always qsys = qcal + qrxn = 0,
qrxn = -43.68 kJ
The heat change of the reaction is - 43.68 kJ which is the heat released by the combustion of 1.922 g of CH3OH. Therefore, the conversion factor is: