When H is positive and S is negative
Answer:
Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals.
I’m assuming your just writing the formula? If so
Potassium chloride: KCL
Potassium nitride: KNO2
Potassium sulfide: K2S
calcium chloride: CaCl2
Calcium nitride: Ca3N2
Calcium sulfide: CaS
Silver chloride: AgCl
Silver nitride: Ag3N
Silver sulfide: Ag2S
Manganese (||) chloride: MnCl2
Manganese (||) nitride: Mn3N2
Manganese (||) sulfide: MnS
Answer:
A complex ion contains a central metal ion bound to one or more ligands
Explanation:
A complex ion is consists of a central atom or ion, that is usually metallic, called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents.
An example of a complex ion is
[Co(NH3)6]3+
Please go through the attached file for a proper representation of the complex ion.
Answer:
Option C. 1
Explanation:
Step 1:
Determination of the Neutron of both isotopes. This is illustrated below.
For isotope y xA:
Mass number = y
Atomic number = x
Neutron =..?
Atomic number = proton number = x
Mass number = Proton + Neutron
y = x + Neutron
Rearrange
Neutron = y – x
For isotope (y + 1) xA:
Mass number = y + 1
Atomic number = x
Neutron =.?
Atomic number = proton number = x
Mass number = Proton + Neutron
y + 1 = x + Neutron
Rearrange
Neutron = y + 1 – x
Step 2:
Determination of the difference between the neutron number of both isotopes. This is illustrated below:
For isotope y xA:
Neutron number = y – x
For isotope (y + 1) xA:
Neutron number = y + 1 – x
Difference in neutron number
=> (y + 1 – x) – (y – x)
=> y + 1 – x – y + x
Rearrange
=> y – y + 1 – x + x
=> 1
Therefore, the difference in the neutron number of both isotopes is 1