Answer:
The gravitational acceleration of a planet of mass M and radius R
a = G*M/R^2.
In this case we have:
G = 6.67 x 10^-11 N (m/kg)^2
R = 2.32 x 10^7 m
M = 6.35 x 10^30 kg
Now we can compute:
a = (6.67*6.35/2.32^2)x10^(-11 + 30 - 2*7) m/s^2 = 786,907.32 m/s^2
The acceleration does not depend on the mass of the object.
Answer:
45.3°C
Explanation:
Heat gained = mass × specific heat × increase in temperature
q = mC (T − T₀)
Given C = 0.128 J/g/°C, m = 94.0 g, q = 305 J, and T₀ = 20.0°C:
305 J = (94.0 g) (0.128 J/g/°C) (T − 20.0°C)
T = 45.3°C
<span>two objects in contact with each other are the same temperature</span>
Answer:
The planet Jupiter completes one revolution of the sun in 362710000 seconds. Long time, right?
Explanation:
3.154x10^7=3.154x10000000=31540000
11.5x31540000=362710000