1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
3 years ago
13

A rocket of initial mass 115 kg (including all the contents) has an engine that produces a constant vertical force (the thrust)

of 1930 N . Inside this rocket, a 18.5-N electrical power supply rests on the floor.
A) Find the initial acceleration of the rocket.

B) When the rocket has reached an altitude of 120 m, how hard does the floor push on the power supply? Neglect the air resistance.
Physics
1 answer:
sweet-ann [11.9K]3 years ago
4 0

Answer:

Part (i) the initial acceleration of the rocket is 6.98 m/s²

Part(ii) the floor pushes on the power supply at 120m altitude by a force of 31.68 N

Explanation:

Part (i) the initial acceleration of the rocket.

For the rocket to accelerate, the force applied to it must overcome gravitational force due to its own weight.

F_{Net} = M(a+g)\\\\1930 = 115(a+9.8)\\\\a +9.8 =\frac{1930}{115} \\\\a +9.8 = 16.78\\\\a = 16.78-9.8\\\\a = 6.98 \frac{m}{s^2}

Part(ii) how hard the floor pushes on the power supply at 120 m altitude

At 120 m height, the acceleration of the rocket is 6.98 m/s², which is the same as the power supply.

given force on power supply;

F = 18.5 N

Applying Newton's second law of motion, the mass of the power supply = 18.5/9.8

= 1.888 kg

The force on power supply at this altitude = m(a+g)

                                           = 1.888(6.98 +9.8)

                                           = 1.888(16.78)

                                           = 31.68 N

Therefore, the floor pushes on the power supply at 120 m altitude by a force of 31.68 N

You might be interested in
Insect A moves 5.0 m/min and insect B moves
mezya [45]

Answer:

insect B by 12m

Explanation:

30min = 1800s (times by 60)

5m/min x 30min = 150m

9cm/s x 1800s = 16,200cm = 162m

162m - 150m = 12m

6 0
2 years ago
Can someone help me with this please
fomenos
Number 19 is frequency and not sure which question you asked!!!??
4 0
3 years ago
Calculate the height of a cliff if it takes 2.35s for a rock to hit the ground when it is thrown straight up from the cliff with
ad-work [718]

Answer:

y₀ = 10.625 m

Explanation:

For this exercise we will use the kinematic relations, where the upward direction is positive.

         y = y₀ + v₀ t - ½ g t²

in the exercise they indicate the initial velocity v₀ = 8 m / s.

when the rock reaches the ground its height is zero

         0 = y₀ + v₀ t - ½ g t²

        y₀i = -v₀ t + ½ g t²

let's calculate

         y₀ = - 8  2.5 + ½  9.8  2.5²

         y₀ = 10.625 m

7 0
2 years ago
A hydrogen atom in a galaxy moving with a speed of 6.65×106 m/???? away from the Earth emits light with a wavelength of 5.13×10−
Mumz [18]

Answer:

The observed wavelength on Earth from that hydrogen atom is 5.24\times 10^{-7}\ m.

Explanation:

Given that,

The actual wavelength of the hydrogen atom, \lambda_a=5.13\times 10^{-7}\ m

A hydrogen atom in a galaxy moving with a speed of, v=6.65\times 10^6\ m/s

We need to find the observed wavelength on Earth from that hydrogen atom. The speed of galaxy is given by :

v=c\times \dfrac{\lambda_o-\lambda_a}{\lambda_a}

\lambda_o is the observed wavelength

\lambda_o=\dfrac{v\lambda_a}{c}+\lambda_a\\\\\lambda_o=\dfrac{6.65\times 10^6\times 5.13\times 10^{-7}}{3\times 10^8}+5.13\times 10^{-7}\\\\\lambda_o=5.24\times 10^{-7}\ m

So, the observed wavelength on Earth from that hydrogen atom is 5.24\times 10^{-7}\ m. Hence, this is the required solution.

8 0
2 years ago
What does the magnitude of centripetal acceleration depend on ?
MariettaO [177]

Explanation:

Centripetal acceleration ac is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. It is perpendicular to the linear velocity v and has the magnitude ac=v2r;ac=rω2 a c = v 2 r ; a c = r ω 2 .

3 0
3 years ago
Other questions:
  • A 60.0 kg ballet dancer stands on her toes during a performance with four square inches (26.0 cm2) in contact with the floor. Wh
    12·1 answer
  • What is always coming, but never arrives?
    5·2 answers
  • 3. Can there be forces acting on an object at rest? Explain why or why not.
    13·1 answer
  • What's the movement of a stationary object?
    8·1 answer
  • What is the PE of an object with a mass of 10 kg, and 2 meters up
    12·2 answers
  • Which is an important step in how an electric motor uses magnetic force to produce motion?
    15·2 answers
  • Four engineers propose designs for door locks that are triggered by a sample of
    13·1 answer
  • Newton's third law is applicable only to objects at rest.<br><br> True <br> False
    10·2 answers
  • Which bolt would experience the greater torque?<br> Α.) Α<br> b.) B <br> c.) both are the same
    8·2 answers
  • Will a 5g piece of platinum sink or float in water
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!