Answer:
A. Up
B. Out
C. Out
D. To equilibrum
Explanation:
a. The reaction in an exothermic reaction so this means heat is given off. If the cylinder is thin enough heat will transfer to the water bath
b. Since the products will create heat which will increase pressure, the piston in an attempt to maintaining a constant pressure will move up to accommodate building pressure.
c. Heat will flow out of the gaseous mixture as this reaction creates heat as a product as well
d. Heat will flow out in the capacity to create an equilibrium with the water bath that it is in.
Answer:
92.87 g.
Explanation:
∵ The percentage yield = (actual yield/theoretical yield)*100.
- We need to calculate the theoretical yield:
From the balanced reaction:
<em>PCl₃ + Cl₂ → PCl₅,</em>
It is clear that 1 mol of PCl₃ reacts with 1 mol of Cl₂ to produce 1 mol of PCl₅.
- We need to calculate the no. of moles of 73.7 g PCl₃:
n = mass/molar mass = (73.7 g)/(137.33 g/mol) = 0.536 mol.
<u><em>Using cross multiplication:</em></u>
1 mol of PCl₃ produce → 1 mol of PCl₅, from stichiometry.
∴ 0.536 mol of PCl₃ produce → 0.536 mol of PCl₅.
∴ The mass of PCl₅ (theoretical yield) = (no. of moles) * (molar mass) = (0.536 mol)*(208.24 g/mol) = 111.62 g.
<em>∵ The percentage yield = (actual yield/theoretical yield)*100.</em>
The percentage yield = 83.2%, theoretical yield = 111.62 g.
∴ The actual yield of PCl₅ = (The percentage yield)(theoretical yield)/100 = (83.2%)(111.62 g)/100 = 92.87 g.
Answer:
Carnivorous plants are easy to grow, if you follow a few, simple rules.
Wet all of the time.
Mineral-free water.
Mineral-free soil.
Lots of light.
Wet all of the time.
Carnivorous plants are native to bogs and similar nutrient-poor habitats. As a consequence, the plants live in conditions that are constantly damp. To grow healthy carnivorous plants, it is important to duplicate their habitat as closely as possible. Keep the soil wet or at least damp all of the time. The easiest way to do this is use the tray method. Set the pots in a tray or saucer, and keep water in it at all times. Pitcher plants can grow in soggy soil with the water level in the saucer as deep as 1/2 the pot, but most carnivorous plants prefer damp to wet soil, so keep the water at about 1/4 inch and refill as soon as it is nearly gone. Water from below, by adding water to the tray, rather than watering the plant. This will avoid washing away the sticky muscilage of the sundews and butterworts and keep from closing the flytraps with a false alarm.
Mineral-free water.
Always use mineral-free water with your carnivorous plants, such as rainwater or distilled water. Try keeping a bucket near the downspout to collect rainwater. Distilled water can be purchased at the grocery store, but avoid bottled drinking water. There are simply too many minerals in it. The condensation line from an air conditioner or heat pump is another source of mineral-free water. Reverse-osmosis water is fine to use. Carnivorous plants grow in nutrient poor soils. The minerals from tap water can “over-fertilize” and “burn out” the plants. In a pinch, tap water will work for a short while, but flush out the minerals with generous portions of rainwater, when it is available.
Mineral-free soil.
The nutrient poor soils to which the carnivorous plants have adapted are often rich in peat and sand. This can be duplicated with a soil mixture of sphagnum peat moss and horticultural sand. Be sure to check the peat label for sphagnum moss. Other types will not work well. The sand should be clean and washed. Play box sand is great, and so is horticultural sand. Avoid “contractor’s sand” which will contain fine dust, silt, clay and other minerals. Never use beach sand or limestone based sand. The salt content will harm the plants. The ratio of the mix is not critical, 1 part peat with 1 part sand works well for most carnivorous plants. Flytraps prefer a bit more sand, and nepenthes prefer much more peat. Use plastic pots, as terra cotta pots will leach out minerals over time and stress your plants.
Explanation:
Kayo na Po bahala magpaigsi
Atoms are made of subatomic particles known as protons, neutrons, and electrons.
(Small bonus: in order to mimic the technology of replicators like in star trek, you need to mess with protons, neutrons, and electrons) (pls dont report)
I think it’s 7.41 because you count up all the atoms and find out how many are x (the large grey ones) and you do 2/27 x 100 which gives you 7.41 :) (sorry if i counted wrong it’s kinda hard)