Answer:
1. 7 (a neutral solution)
Answer: 10-7= 0.0000001 moles per liter
2. 5.6 (unpolluted rainwater)
Answer: 10-5.6 = 0.0000025 moles per liter
3. 3.7 (first acid rain sample in North America)
Answer: 10-3.7 = 0.00020 moles per liter
The concentration of H+ in the Hubbard Brook sample is 0.00020/0.0000025, which is 80 times higher than the H+ concentration in unpolluted rainwater.
Explanation:
Answer:
Pyrophoricity is a property of metals and oxides of lower oxidation states, including radioactive ones, in which they spontaneously ignite during or after stabilization.
Adding (S2O3)2- would affect the reaction mechanism that involves this ion. From the reaction mechanism given above, the equilibrium of step 2 would be affected. Adding the stock solution of (S2O3)2- would shift the equilibrium to the right thus making more products of the said mechanism. Also, the reaction rate of this step would occur faster than the original rate. This is based on Le Chatelier's Prinicple which states that a corresponding change would happen to the equilibrium of a reaction when pressure, concentration of the substances or temperature is changed. So, that after the addition, a color change would appear immediately because I3- would be removed slowly from solution, and would therefore be able to react with starch.
Answer:
Kc = 1.09x10⁻⁴
Explanation:
<em>HF = 1.62g</em>
<em>H₂O = 516g</em>
<em>F⁻ = 0.163g</em>
<em>H₃O⁺ = 0.110g</em>
<em />
To solve this question we need to find the moles of each reactant in order to solve the molar concentration of each reactan and replacing in the Kc expression. For the reaction, the Kc is:
Kc = [H₃O⁺] [F⁻] / [HF]
<em>Because Kc is defined as the ratio between concentrations of products over reactants powered to its reaction coefficient. Pure liquids as water are not taken into account in Kc expression:</em>
<em />
[H₃O⁺] = 0.110g * (1mol /19.01g) = 0.00579moles / 5.6L = 1.03x10⁻³M
[F⁻] = 0.163g * (1mol /19.0g) = 0.00858moles / 5.6L = 1.53x10⁻³M
[HF] = 1.62g * (1mol /20g) = 0.081moles / 5.6L = 0.0145M
Kc = [1.03x10⁻³M] [1.53x10⁻³M] / [0.0145M]
<h3>Kc = 1.09x10⁻⁴</h3>