Answer:
A:There must be diversity in the population.
Explanation:
Hopefully this helps!
Answer:
1. n = 0.174mol
2. T= 26.8K
3. P = 1.02atm
4. V = 126.88L
Explanation:
1. P= 2.61atm
V = 1.69L
T = 36.1 °C = 36.1 + 273= 309.1K
R = 0.082atm.L/mol /K
n =?
n = PV / RT = (2.61x1.69)/(0.082x309.1)
n = 0.174mol
2. P = 302 kPa = 302000Pa
101325Pa = 1atm
302000Pa = 302000/101325 = 2.98atm
V = 2382 mL = 2.382L
T =?
n = 3.23 mol
R = 0.082atm.L/mol /K
T= PV /nR = (2.98x2.382)/(3.23x0.082) = 26.8K
3. P =?
V = 0.0250 m³ = 25L
T = 288K
n = 1.08mol
R = 0.082atm.L/mol /K
P = nRT/V = (1.08x0.082x288)/25 = 1.02atm
4. P = 782 torr
760Torr = 1 atm
782 torr = 782/760 = 1.03atm
V =?
T = 303K
n = 5.26 mol
R = 0.082atm.L/mol /K
V = nRT/P
V = (5.26x0.082x303)/1.03 = 126.88L
Answer:
Temperature is the condition of the atmosphere at any given time and place
and climate is the weather over a long period of time
Explanation:
I think so-
Given that 1 micrometer or micron (um) is equivalent by definition to 1 x 10^-6 m, this means that 1 square micron (um^2) is equivalent to (1 x 10^-6)^2 m^2, or 1 x 10^-12 m^2.
(2.60 um^2) * (1 x 10^-12 m^2 / 1 um^2) = 2.60 x 10^-12 m^2
Therefore the layer of graphene covers an area of 2.60 x 10^-12 m^2.
<span />
Answer:
e. UDP-glucose pyrophosphorylase catalyzes the reaction of glucose-I-phosphate and UTP to UDP-glucose and PPi
a. Pyrophosphatase converts PPi and water into two Pi
b. Glycogen synthase adds a glucose unit from UDP-glucose to glycogen, producing a larger glycogen molecule and UDP
Explanation:
Glycogen synthesis or glycogenesis is the process of synthesis of glycogen molecules from glucose molecules in living organisms. Glycogen is a polysaccharide storage form of glucose and helps to store excess glucose in the body form use when required by the body.
The synthesis of glycogen involves sugar nucleotides. Sugar nucleotides are compounds in which a sugar molecule is attached to a nucleotide through phosphate ester bond, resulting in the activation of the sugar molecule. The sugar nucleotides then are used as substrates for the polymerization of the monosaccharide sugars into disaccharides, oligosaccharides and polysaccharides.
In the synthesis of glycogen, glucose-6-phosphate from phosphorylation of free glucose by hexokinase is first isomerized to glucose-1-phosphate by phosphoglucomutase.
Glucose-1-phosphate is then converted to UDP-glucose by its reaction with UTP catalyse by UDP-glucose pyrophosphorylase. The reaction is favoured by the rapid hydrolysis of PPi produced to two molecules of inorganic phosphate by the enzyme pyrophosphatase.
Glycogen synthase then adds a glucose unit from UDP-glucose to a growing chain of glycogen, producing a larger glycogen molecule and free UDP.