The component of the candle burning in the surrounding has been the oxygen in the air.
The burning of candle wax and wick has been the chemical reaction. It has been based on the reaction of wick with the atmospheric oxygen, resulting in the formulation of the wax burning.
<h3>Chemical reaction of burning of wax</h3>
The wax has been vaporizes by the heat of the flame, that has been resulted by the burning. The wick has been able to react with the oxygen and form the byproducts that helps in flame burning.
The end products have been wick and oxygen as the wax has been consumed in the reaction. The air in the surrounding has oxygen as the part of the system, as it has been involved in the reaction.
Learn more about candle burning, here:
brainly.com/question/25955977
Yes you do cause its more explanation to
<span />
Answer:
320 g
Step-by-step explanation:
The half-life of Co-63 (5.3 yr) is the time it takes for half of it to decay.
After one half-life, half (50 %) of the original amount will remain.
After a second half-life, half of that amount (25 %) will remain, and so on.
We can construct a table as follows:
No. of Fraction Mass
half-lives t/yr Remaining Remaining/g
0 0 1
1 5.3 ½
2 10.6 ¼
3 15.9 ⅛ 40.0
4 21.2 ¹/₁₆
We see that 40.0 g remain after three half-lives.
This is one-eighth of the original mass.
The mass of the original sample was 8 × 40 g = 320 g
Answer:
B: parallel
Explanation:
because a parallel circuit has two or more paths for current to flow through. Voltage is the same across each component of the parallel circuit. The sum of the currents through each path is equal to the total current that flows from the source.
Answer:
<em>The correct option is D) Cows release all of their energy as heat.</em>
Explanation:
Not all of the energy gets travelled from one trophic level to another. Observations have shown that only 10% of the energy travels from one trophic level to another when an organism of the upper trophic level consumes an organism of the lower trophic level. This is because most of the energy is lost by organisms as heat.
So, let's consider that there is 100% energy in plants that the cow eat. The cows will only receive 10% of the energy from the plants. The organisms that will eat the cows will only receive 1%of the energy.