Answer:
A pipe has a length of 1.15 m.
a) Determine the frequency of the first harmonic if the pipe is open at each end. The velocity of sound in air is 343 m/s. Answer in units of Hz
b) What is the frequency of the first harmonic if the pipe is closed at one end?
Answer in units of Hz
Explanation:
Answer:
b) 900 W
Explanation:
The breaker trips when the current is equal to 20 A. The power (P) is the ddp (V) multiplied by the current. So, for the electric heater, the current is:
P = V*i
1500 = 120*i
i = 12.5 A
So, to become in 20 A, it's needed 7.5 A, which must come from the hairdryer. Its power must be:
P = 120*7.5
P = 900 W
Are you answering a question or asking? You have already seemed to get the answer, A is the correct answer :I
<u>Answer:</u> The velocity of released alpha particle is 
<u>Explanation:</u>
According to law of conservation of momentum, momentum can neither be created nor be destroyed until and unless, an external force is applied.
For a system:

where,
= Initial mass and velocity
= Final mass and velocity
We are given:

Putting values in above equation, we get:

Hence, the velocity of released alpha particle is 
Answer:
a) [volts] = [N m / C],
b) The lines or surface that has the same potential are called equipotential
c) the equipotential lines must also be perpendicular to the electric field lines
Explanation:
a) find the units of the volt
the electric potential energy is
V = k q / r
V = [N m² / C²] C / m
V = [N m / C]
The electric potential is defined as
V = E .s
V = [N / C] [m]
V = [N m / C] = [volt]
we see that in the two expressions the same result is obtained therefore the volt is
[volts] = [N m / C]
b) The lines or surface that has the same potential are called equipotential surfaces, the great utility of these lines or surfaces is that a face can be displaced on it without doing work.
c) The electric potential is defined as the gradient of the electric field
v =
therefore the equipotential lines must also be perpendicular to the electric field lines