I think answer should be d. Please give me brainlest I hope this helps let me know if it’s correct or not okay thanks I appreciate it
The right<span> at +20.0 </span>cm/s makes<span> an </span>elastic head<span>-on </span>collision<span> with a 10.0 </span>g object<span> that </span>makes<span> an</span>elastic head<span>-on </span>collision<span> with a 10.0 </span>g object<span> that is </span>initially<span> at </span>rest<span>.(b) Find the fraction of the </span>initial<span>kinetic energy transferred to the 10.0 </span>g object<span>.of small </span>mass<span> before and </span>after collision; V=velocity<span> of big </span>mass after collision<span>.</span>
Answer:
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge
Answer:
v = 306.76 Km/h
Explanation:
given,
height of the aircraft = 3000 m
differential pressure reading = 3300 N/m²
density of air = 0.909 Kg/m³
speed of aircraft = ?
Assuming the air flowing above air craft is in-compressible, irrotational and steady so, we can use Bernoulli's equation to solve the problem.
using Bernoulli's equation

where ρ is the density of the air at 3000 m



v = 85.21 m/s

v = 306.76 Km/h
Answer:

1994.7944465 miles
46390568.5227 miles
125 ft
Explanation:


The distance is 


Converting to inches

Converting to miles

The distance is 1994.7944465 miles

The distance is 46390568.5227 miles



The distance is 125 ft