The answer to this question i think would be 8950. Do you have any answer choices.
Answer:
A) s=1/2at^2
t=√(2s/a)=√(2x400)/10.0)=9.0s
B) v=at
v=10.0x9=90m/s
I think it's B hope it helps
Answer:
A
Explanation:
When friction slows a sliding block, <u>the kinetic energy of the block is transformed into internal energy
.</u>
<em>The frictional movement of two surfaces over one another leads to the conversion of some of their kinetic energies to another energy - heat or thermal energy. Hence, the temperatures of the objects are raised in the process. </em>
<u>Therefore, when a sliding block is slowed down due to friction, some of the kinetic energy of the block would be transformed into internal energy in the form of heat.</u>
The correct option is A.
Answer:
Heat of vaporization will be 22.59 j
Explanation:
We have given mass m = 10 gram
And heat of vaporization L = 2.259 J/gram
We have to find the heat required to vaporize 10 gram mass
We know that heat of vaporization is given by
, here m is mass and L is latent heat of vaporization.
So heat of vaporization Q will be = 10×2.259 = 22.59 J