1 bar or 100 000 pascales. Or 1020 hPa. It kinda differentiates.
Three forces involved in brushing your teeth are first push, then pull, then push.
Answer:
a) 2nd case rate of rotation gives the greater speed for the ball
b) 1534.98 m/s^2
c) 1515.04 m/s^2
Explanation:
(a) v = ωR
when R = 0.60, ω = 8.05×2π
v = 0.60×8.05×2π = 30.34 m/s
Now in 2nd case
when R = 0.90, ω = 6.53×2π
v = 0.90×6.53×2π = 36.92 m/s
6.35 rev/s gives greater speed for the ball.
(b) a = ω^2 R = (8.05×2π)^2 )(0.60) = 1534.98 m/s^2
(c) a = ω^2 R = (6.53×2π)^2 )(0.90) = 1515.05 m/s^2
Answer:
a) a = 3.06 10¹⁵ m / s
, b) F= 1.43 10⁻¹⁰ N, c) F_total = 14.32 10⁻²⁶ N
Explanation:
This exercise will average solve using the moment relationship.
a ) let's use the relationship between momentum and momentum
I = ∫ F dt = Δp
F t = m
- m v₀
F = m (v_{f} -v₀o) / t
in the exercise indicates that the speed module is the same, but in the opposite direction
F = m (-2v) / t
if we use Newton's second law
F = m a
we substitute
- 2 mv / t = m a
a = - 2 v / t
let's calculate
a = - 2 4.59 10²/3 10⁻¹³
a = 3.06 10¹⁵ m / s
b) F= m a
F= 4.68 10⁻²⁶ 3.06 10¹⁵
F= 1.43 10⁻¹⁰ N
c) if we hit the wall for 1015 each exerts a force F
F_total = n F
F_total = n m a
F_total = 10¹⁵ 4.68 10⁻²⁶ 3.06 10¹⁵
F_total = 14.32 10⁻²⁶ N
Answer:
(i) The wavelength is 0.985 m
(ii) The frequency of the wave is 36.84 Hz
Explanation:
Given;
mass of the string, m = 0.0133 kg
tensional force on the string, T = 8.89 N
length of the string, L = 1.97 m
Velocity of the wave is:

(i) The wavelength:
Fourth harmonic of a string with two nodes, the wavelength is given as,
L = 2λ
λ = L/2
λ = 1.97 / 2
λ = 0.985 m
(ii) Frequency of the wave is:
v = fλ
f = v / λ
f = 36.29 / 0.985
f = 36.84 Hz