Answer:
-5.63 m/s
Explanation:
Given:
y₀ = 1.62 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: v
v² = v₀² + 2a (y − y₀)
v² = (0 m/s)² + 2(-9.8 m/s²) (0 m − 1.62 m)
v = -5.63 m/s
-- Resistance can be useful among the population of a repressive government.
Although it can be dangerous for those who resist, it can also exert pressure
against the regime to alter its repressive practices.
-- Resistance can also be useful in electronic circuits. "Lumped" components with
known numerical values of resistance are used to divide voltage, limit current, and
dissipate controlled amounts of electrical energy.
Answer:
v=32.49 m/s
Explanation:
Given that
Distance ,d= 66 m
Initial speed of the car ,u = 0 m/s
Coefficient of friction ,μ = 0.8
Lets take the total mass of the car = m
The acceleration of the car is given as
a = μ g ( g= 10 m/s² )
Now by putting the values in the above equation we get
a= 0.8 x 10 m/s²
a= 8 m/s²
We know that ,final speed is given as
v²= u ²+ 2 a d
Now putting the value
v²=0² + 2 x 8 x 66
v²= 1056
v=32.49 m/s
It stops accelerating when the air resistance is equal to its weight.
That's (m•g)
= (2 kg) • (9.8 m/s^2)
= 19.6 newtons
Answer:
(b) EAST
Explanation:
you can assume that the magnetic field points rightward, that is, in the positive x direction (NORTH). Furthermore, you can assume that the direction of the motion of the electron is in the positive y direction. Hence, you have:

You use the Lorentz formula to known which is the direction of the magnetic force over the electron:

which implies the cross product between the unitary vecors j and i, that is
(WEST)
However, the minus sign of the charge of the electron changes the direction 180°. Hence, the direction is k. That is, to the EAST